Abstract

This research focuses on the prediction and experimental verification of P-bifurcation as well as the effectiveness in reducing vibrations and harvesting energy with the use of an inertially nonlinear energy harvesting device attached to a single-degree-of-freedom structure subjected to Gaussian broadband base excitation, modeled as white noise. Four experimental scenarios were tested, including three with different resistive loads and one with an open circuit. Frequency domain optimization involved an optimization routine that was designed to minimize the mean squared error in the pendulum velocity’s frequency content below two cycles per second while constraining the root mean square velocity discrepancy between the simulations and actual experiments to be below 3%. This facilitated accurate predictions of power, vibration suppression, and P-bifurcation. Using the fitted model, an analytically derived P-bifurcation boundary in the noise intensity versus electrical damping plane was presented and experimentally verified. Additionally, power spectral densities for electric power and relative suspended mass velocity were determined for the inerter pendulum vibration absorber system and compared with a top-performing linear system. Results indicated that the monomodal system was the least effective in energy harvesting, while the bimodal and rotational systems significantly enhanced mean and resonant peak power by up to a factor of four and two, respectively. Near the resonant frequency, the peak relative velocity power spectral density decreased by around a factor of four, and the mean square relative velocity improved by as much as a factor of two.

References

1.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Dane Quinn
,
D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
2.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
3.
Li
,
X.
,
Zhang
,
J.
,
Li
,
R.
,
Dai
,
L.
,
Wang
,
W.
, and
Yang
,
K.
,
2021
, “
Dynamic Responses of a Two-Degree-of-Freedom Bistable Electromagnetic Energy Harvester Under Filtered Band-Limited Stochastic Excitation
,”
J. Sound Vib.
,
511
, p.
116334
.
4.
Zhou
,
Z.
,
Qin
,
W.
,
Du
,
W.
,
Zhu
,
P.
, and
Liu
,
Q.
,
2019
, “
Improving Energy Harvesting From Random Excitation by Nonlinear Flexible Bi-Stable Energy Harvester With a Variable Potential Energy Function
,”
Mech. Syst. Signal Process.
,
115
, pp.
162
172
.
5.
De Paula
,
A. S.
,
Inman
,
D. J.
, and
Savi
,
M. A.
,
2015
, “
Energy Harvesting in a Nonlinear Piezomagnetoelastic Beam Subjected to Random Excitation
,”
Mech. Syst. Signal Process.
,
54
, pp.
405
416
.
6.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2013
, “
Response of Duffing-Type Harvesters to Band-Limited Noise
,”
J. Sound Vib.
,
332
(
25
), pp.
6755
6767
.
7.
Huang
,
B.
,
Hsieh
,
C.-Y.
,
Golnaraghi
,
F.
, and
Moallem
,
M.
,
2015
, “
Development and Optimization of an Energy-Regenerative Suspension System Under Stochastic Road Excitation
,”
J. Sound Vib.
,
357
, pp.
16
34
.
8.
Li
,
P.
, and
Zuo
,
L.
,
2017
, “
Influences of the Electromagnetic Regenerative Dampers on the Vehicle Suspension Performance
,”
Proc. Inst. Mech. Eng., Part D: J. Autom. Eng.
,
231
(
3
), pp.
383
394
.
9.
Abdelkareem
,
M. A.
,
Xu
,
L.
,
Guo
,
X.
,
Ali
,
M. K. A.
,
Elagouz
,
A.
,
Hassan
,
M. A.
,
Essa
,
F.
, and
Zou
,
J.
,
2018
, “
Energy Harvesting Sensitivity Analysis and Assessment of the Potential Power and Full Car Dynamics for Different Road Modes
,”
Mech. Syst. Signal Process.
,
110
, pp.
307
332
.
10.
Lan
,
C.
, and
Qin
,
W.
,
2017
, “
Enhancing Ability of Harvesting Energy From Random Vibration by Decreasing the Potential Barrier of Bistable Harvester
,”
Mech. Syst. Signal Process.
,
85
, pp.
71
81
.
11.
Li
,
M.
,
Liu
,
D.
, and
Li
,
J.
,
2023
, “
Stochastic Analysis of Vibro-Impact Bistable Energy Harvester System Under Colored Noise
,”
Nonlinear Dyn.
,
111
(
18
), pp.
17007
17020
.
12.
He
,
Q.
, and
Daqaq
,
M. F.
,
2015
, “
New Insights Into Utilizing Bistability for Energy Harvesting Under White Noise
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021009
.
13.
Mirzakhalili
,
E.
, and
Epureanu
,
B. I.
,
2019
, “
Probabilistic Analysis of Bifurcations in Stochastic Nonlinear Dynamical Systems
,”
ASME J. Comput. Nonlinear. Dyn.
,
14
(
8
), p.
081009
.
14.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), p.
04014064
.
15.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.
16.
Kougioumtzoglou
,
I.
, and
Spanos
,
P.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.
17.
Cosner
,
J. A.
, and
Tai
,
W. -C.
,
2023
, “
P-Bifurcation Analysis of a Quarter-Car Model With Inerter-Based Pendulum Vibration Absorber: A Wiener Path Integration Approach
,”
ASME J. Comput. Nonlinear. Dyn.
,
19
(
2
), p.
021004
.
18.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.
19.
Cosner
,
J. A.
, and
Tai
,
W. -C.
,
2022
, “
Stochastic Bifurcation and Energy Transfer in an Inerter-Based Pendulum Vibration Absorber
,”
ASME J. Comput. Nonlinear. Dyn.
,
17
(
8
), p.
081003
.
20.
Psaros
,
A. F.
,
Kougioumtzoglou
,
I. A.
, and
Petromichelakis
,
I.
,
2018
, “
Sparse Representations and Compressive Sampling for Enhancing the Computational Efficiency of the Wiener Path Integral Technique
,”
Mech. Syst. Signal Process.
,
111
, pp.
87
101
.
21.
Hajidavalloo
,
M. R.
,
Cosner
,
J.
,
Li
,
Z.
,
Tai
,
W. -C.
, and
Song
,
Z.
,
2022
, “
Simultaneous Suspension Control and Energy Harvesting Through Novel Design and Control of a New Nonlinear Energy Harvesting Shock Absorber
,”
IEEE Trans. Vehicular Technol.
,
71
(
6
), pp.
6073
6087
.
22.
Arnold
,
L.
,
2001
, “
Recent Progress in Stochastic Bifurcation Theory
”.
IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics
,
S.
Narayanan
and
R. N.
Iyengar
, eds.,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
15
27
.
23.
Crauel
,
H. A.
,
1999
,
Stochastic Dynamics [Electronic Resource]
,
Springer New York
,
New York, NY
.
24.
Liang
,
Y.
, and
Namachchivaya
,
N. S.
,
1999
,
P-Bifurcations in the Noisy Duffing-van Der Pol Equation
,
Springer New York
,
New York, NY
, pp.
49
70
.
25.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
,
Mineola, New York
.
26.
Knobloch
,
E.
, and
Wiesenfeld
,
K. A.
,
1983
, “
Bifurcations in Fluctuating Systems: The Center-Manifold Approach
,”
J. Stat. Phys.
,
33
(
3
), pp.
611
637
.
27.
Sri Namachchivaya
,
N.
,
1990
, “
Stochastic Bifurcation
,”
Appl. Math. Comput.
,
38
(
2
), pp.
101
159
.
28.
Soong
,
T.
, and
Grigoriu
,
M.
,
1993
,
Random Vibration of Mechanical and Structural Systems
,
PTR Prentice Hall
,
Englewood Cliffs, NJ
.
29.
Zhang
,
Y.
,
Jin
,
Y.
,
Xu
,
P.
, and
Xiao
,
S.
,
2020
, “
Stochastic Bifurcations in a Nonlinear Tri-Stable Energy Harvester Under Colored Noise
,”
Nonlinear Dyn.
,
99
, pp.
879
897
.
30.
Xu
,
Y.
,
Gu
,
R.
,
Zhang
,
H.
,
Xu
,
W.
, and
Duan
,
J.
,
2011
, “
Stochastic Bifurcations in a Bistable Duffing–Van Der Pol Oscillator With Colored Noise
,”
Phys. Rev. E
,
83
(
5
), p.
056215
.
31.
Kumar
,
P.
,
Narayanan
,
S.
, and
Gupta
,
S.
,
2017
, “
Bifurcation Analysis of a Stochastically Excited Vibro-Impact Duffing-Van Der Pol Oscillator With Bilateral Rigid Barriers
,”
Int. J. Mech. Sci.
,
127
, pp.
103
117
.
32.
Kumar
,
P.
,
Narayanan
,
S.
, and
Gupta
,
S.
,
2016
, “
Investigations on the Bifurcation of a Noisy Duffing–Van Der Pol Oscillator
,”
Probab. Eng. Mech.
,
45
, pp.
70
86
.
33.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Lin
,
J.
,
Liu
,
S.
, and
Wang
,
Z.
,
2014
, “
Broadband Tristable Energy Harvester: Modeling and Experiment Verification
,”
Appl. Energy
,
133
, pp.
33
39
.
34.
Zhang
,
T.
, and
Jin
,
Y.
,
2024
, “
An Improved Coupled Tri-Stable Energy Harvesting System With Spring Stops for Passive Control
,”
Commun. Nonlinear Sci. Numerical Simul.
,
135
, p.
108050
.
35.
Zhou
,
Z.
,
Qin
,
W.
, and
Zhu
,
P.
,
2017
, “
A Broadband Quad-Stable Energy Harvester and Its Advantages Over Bi-Stable Harvester: Simulation and Experiment Verification
,”
Mech. Syst. Signal Process.
,
84
, pp.
158
168
.
36.
Cai
,
Q.
, and
Zhu
,
S.
,
2022
, “
The Nexus Between Vibration-Based Energy Harvesting and Structural Vibration Control: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
155
, p.
111920
.
37.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
38.
Xue
,
J.-R.
,
Zhang
,
Y.-W.
,
Niu
,
M.-Q.
, and
Chen
,
L.-Q.
,
2023
, “
Harvesting Electricity From Random Vibrations Via a Nonlinear Energy Sink
,”
J. Vib. Control
,
29
(
23–24
), pp.
5398
5412
.
39.
Cosner
,
J.
, and
Tai
,
W.-C.
,
2024
, “
An Experimental Investigation of P-bifurcation, Energy Harvesting and Vibration Suppression Using a Nonlinear Inerter Device
,”
ASME CIE-IDETC 2024
,
Washington, DC
,
Aug. 25–28
.
40.
Zuo
,
L.
, and
Zhang
,
P.-S.
,
2013
, “
Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011002
.
41.
Liu
,
X.
,
Li
,
Y.
,
Cheng
,
Y.
, and
Cai
,
Y.
,
2023
, “
Sparse Identification for Ball-Screw Drives Considering Position-Dependent Dynamics and Nonlinear Friction
,”
Rob. Comput.-Integr. Manuf.
,
81
, p.
102486
.
42.
Bowen
,
L.
,
Vinolas
,
J.
, and
Olazagoitia
,
J. L.
,
2019
, “
The Influence of Friction Parameters in a Ball-Screw Energy-Harvesting Shock Absorber
,”
Nonlinear Dyn.
,
96
(
4
), pp.
2241
2256
.
You do not currently have access to this content.