Abstract

Time-domain equivalent source method (TDESM) has been employed for indoor simulation of pass-by noise (PBN). Despite removing the requirement of dedicated large semi-anechoic chambers for the microphone array technique, it is still difficult to obtain high simulation accuracy due to the existence of signal splicing error and ill consideration of Doppler effect induced by the vehicle motion. In this article, the TDESM is developed to improve the simulation accuracy of PBN. Unlike the previous TDESM, the improved TDESM (I-TDESM) models the PBN by superposing the contributions of an array of moving equivalent sources, which can take the influence of vehicle motion into account. The PBN at the receivers can be directly reconstructed via the sound field calculation of moving sources. Numerical studies and real vehicle experiments are implemented to demonstrate the feasibility of the I-TDESM. Simulation results show that the I-TDESM can naturally incorporate the Doppler effect and effectively eliminate the signal splicing error, thus improving the simulation accuracy. The experiment results of real vehicle further validate the I-TDESM.

References

1.
ISO
,
2015
,
ISO 362-1:2015 Measurement of Noise Emitted by Accelerating Road Vehicles—Engineering Method—Part 1: M and N Categories
,
British Standards Institution
,
London
.
2.
Braun
,
M. E.
,
Walsh
,
S. J.
,
Horner
,
J. L.
, and
Chuter
,
R.
,
2013
, “
Noise Source Characteristics in the ISO 362 Vehicle Pass-by Noise Test: Literature Review
,”
Appl. Acoust.
,
74
(
11
), pp.
1241
1265
.
3.
ISO, ISO 362-3
,
2016
,
Measurement of Noise Emitted by Accelerating Road Vehicles—Engineering Method—Part 3: Indoor Testing M and N Categories
,
British Standards Institution
,
London
.
4.
Fry
,
J.
, and
Jennings
,
P.
,
2003
, “
Using Multi-Layer Perceptron to Predict Vehicle Pass-by Noise
,”
Neural Comput. Appl.
,
11
(
3–4
), pp.
161
167
.
5.
Redel-Macías
,
M. D. J.
,
Fernández-Navarro
,
F.
,
Antonio Gutiérrez
,
P.
,
Cubero-Atienza
,
A. J.
, and
Hervás-Martínez
,
C.
,
2013
, “
Ensembles of Evolutionary Product Unit or RBF Neural Networks for the Identification of Sound for Pass-by Noise Test in Vehicles
,”
Neurocomputing
,
109
, pp.
56
65
.
6.
Knappe
,
F.
, and
Rosskopf
,
J.
,
2022
, “
Pass-by Noise Prediction of Motor Vehicles Using Gradient Boosted Models and Physical Calculations of Longitudinal Driving Dynamics
,”
Noise Control Eng. J.
,
70
(
3
), pp.
246
263
.
7.
Huijssen
,
J.
,
Hallez
,
R.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
A Synthesis Procedure for Pass-by Noise of Automotive Vehicles Employing Numerically Evaluated Source-Receiver Transfer Functions
,”
J. Sound Vib.
,
332
(
15
), pp.
3079
3802
.
8.
Vansant
,
K.
,
Bériot
,
H.
,
Bertolini
,
C.
, and
Miccoli
,
G.
,
2014
, “
An Update and Comparative Study of Acoustic Modeling and Solver Technologies in View of Pass-by Noise Simulation
,”
SAE Int. J. Engines
.
9.
Danti
,
M.
,
Biasiolo
,
M.
,
Amodeo
,
D.
, and
Di Nenno
,
G.
,
2020
, “
A Hybrid Approach for the Assessment of Paths in Pass-by Maneuver
,”
SAE Int. J. Engines
.
10.
Zheng
,
S. F.
,
Hao
,
P.
,
Lin
,
X. M.
, and
Li
,
K. Q.
,
2011
, “
Time-Domain Transfer Path Analysis of Multiple Moving Noise Sources
,”
Noise Control Eng. J.
,
59
(
5
), pp.
541
548
.
11.
Hamdad
,
H.
,
Pezerat
,
C.
,
Gauvreau
,
B.
,
Locqueteau
,
C.
, and
Denoual
,
Y.
,
2019
, “
Sensitivity Analysis and Propagation of Uncertainty for the Simulation of Vehicle Pass-by Noise
,”
Appl. Acoust.
,
149
, pp.
85
98
.
12.
Papaioannou
,
A.
,
Elliott
,
S. J.
, and
Cheer
,
J.
,
2020
, “
Application of ℓp Norm Regularisation Techniques in the Synthesis of Indoor Tyre Pass-by Noise With the Inverse Method
,”
J. Sound Vib.
,
473
, p.
115240
.
13.
Calloni
,
M.
,
Musser
,
C.
,
Castel
,
A.
,
Mejdi
,
A.
,
Augusto
,
M.
, and
Castel
,
A.
,
2019
, “
A Pass-by Noise Prediction Method Based on Source-Path-Receiver Approach Combining Simulation and Test Data
,”
SAE Int. J. Engines
.
14.
Chu
,
Z. G.
,
Wang
,
H. W.
,
Chen
,
C. H.
,
Yan
,
H.
, and
Kang
,
R. C.
,
2017
, “
Source Path Contribution Analysis for Vehicle Indoor Pass-by Noise
,”
Sound Vib.
,
51
(
9
), pp.
16
20
.
15.
Ryn
,
Y.
, and
Lange
,
S.
,
2007
, “
The Design and Validation of Simulated Indoor Pass-by Noise Measurement System
,”
SAE Int. J. Engines
.
16.
Guidati
,
S.
,
Sottek
,
R.
, and
Fazekas
,
A.
,
2011
, “
Measurement, Analysis and Simulation of Noise Radiated by Vehicles Passing-by in Road Traffic
,”
Proceedings of Forum Acusticum
,
Aalborg, Denmark
,
June 27–July 1
, pp.
2767
2772
.
17.
Schuhmacher
,
A.
, and
Varricchio
,
E.
,
2018
, “
Indoor Pass-by Noise Engineering to Understand Vehicle Noise Sources and Prediction of Outdoor Noise Levels
,”
Proceedings of 2018 International Congress on Noise Control Engineering
,
Chicago, IL
,
Aug. 26–29
.
18.
Liu
,
C.
,
Chen
,
J.
,
Zhang
,
Y. B.
,
Zhang
,
X. Z.
, and
Li
,
J. Z.
,
2019
, “
A Method of Measuring the Powertrain Noise for the Indoor Prediction of Pass-by Noise
,”
Appl. Acoust.
,
156
, pp.
289
296
.
19.
Alkmim
,
M.
,
Cuenca
,
J.
,
Ryck
,
L. D.
,
Janssens
,
K.
,
Kournoutos
,
N.
,
Papaioannou
,
A.
,
Cheer
,
J.
, and
Desmet
,
W.
,
2020
, “
A Semi-Circular Microphone Array Configuration for Indoor Pass-by Noise Sound Synthesis
,”
49th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2020
,
Seoul, South Korea
,
Aug. 23–26
.
20.
Chen
,
J.
,
Liu
,
C.
,
Zhang
,
X. Z.
,
Zhang
,
Y. B.
, and
Li
,
J. Z.
,
2021
, “
An Approach for Indoor Prediction of the Pass-by Noise of a Vehicle Based on the Time-Domain Equivalent Source Method
,”
Mech. Syst. Signal Process
,
146
, p.
107037
.
21.
Lee
,
S.
,
2017
, “
Review: The use of Equivalent Source Method in Computational Acoustics
,”
J. Comput. Acoust.
,
25
(
1
), p.
1630001
.
22.
Zhang
,
X. Z.
,
Bi
,
C. X.
,
Zhang
,
Y. B.
, and
Geng
,
L.
,
2021
, “
Separation of Nonstationary Sound Fields Based on the Time-Domain Equivalent Source Method With Single Layer Pressure-Velocity Measurements
,”
J. Acoust. Soc. Am.
,
149
(
1
), pp.
487
498
.
23.
Chaitanya
,
S. K.
, and
Srinivasan
,
K.
,
2022
, “
Equivalent Source Method Based Near Field Acoustic Holography Using Multipath Orthogonal Matching Pursuit
,”
Appl. Acoust.
,
187
, p.
108501
.
24.
Valdivia
,
N. P.
,
2022
, “
Krylov Subspace Iterative Methods for Time Domain Equivalent Sources Method Based Nearfield Acoustical Holography
,”
J. Sound Vib.
,
516
, p.
116499
.
25.
Morse
,
P. M.
, and
Ingard
,
K. U.
,
1968
,
Theoretical Acoustics
,
McGraw-Hill
,
New York
, pp.
721
724
.
26.
Ochmann
,
M.
,
2004
, “
The Complex Equivalent Source Method for Sound Propagation Over an Impedance Plane
,”
J. Acoust. Soc. Am.
,
116
(
6
), pp.
3304
3311
.
27.
Ochmann
,
M.
,
2011
, “
Closed Form Solutions for the Acoustical Impulse Response Over a Masslike or an Absorbing Plane
,”
J. Acoust. Soc. Am.
,
129
(
6
), pp.
3502
3512
.
28.
Chu
,
Z. G.
,
Shen
,
L. B.
, and
Yang
,
Y.
,
2016
, “
Non-Negative Least Squares Deconvolution Method for Mirror-Ground Beamforming
,”
J. Vib. Control
,
22
(
16
), pp.
3470
3478
.
29.
Lee
,
S.
,
Brentner
,
K. S.
, and
Morris
,
P. J.
,
2010
, “
Acoustic Scattering in the Time Domain Using an Equivalent Source Method
,”
AIAA J.
,
48
(
12
), pp.
2772
2780
.
30.
Lee
,
S.
,
Brentner
,
K. S.
, and
Morris
,
P. J.
,
2011
, “
Assessment of Time-Domain Equivalent Source Method for Acoustic Scattering
,”
AIAA J.
,
49
(
9
), pp.
1897
1906
.
31.
Zhang
,
Y. B.
,
Bi
,
C. X.
,
Zhang
,
X. Z.
, and
Xu
,
L.
,
2017
, “
Suppressing the Onset of Instabilities in the Time-Domain Equivalent Source Method Using a Multistep Approach
,”
J. Acoust. Soc. Am.
,
141
(
6
), pp.
4810
4821
.
32.
Geng
,
L.
,
Yu
,
L.
,
He
,
C. D.
,
Wang
,
W. G.
, and
Dai
,
Y. H.
,
2020
, “
A Multistep Acoustic Method for Suppressing the Reconstruction Instability of Instantaneous Vibration of an Exciting Planar Structure
,”
Mech. Syst. Signal Process
,
135
, p.
106402
.
33.
Williams
,
E. G.
,
2001
, “
Regularization Methods for Near-Field Acoustical Holography
,”
J. Acoust. Soc. Am.
,
110
(
4
), pp.
1976
1988
.
34.
Yoon
,
S. H.
, and
Nelson
,
P. A.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods: Part II, Experimental Investigation of Methods for Choosing Regularization Parameter
,”
J. Sound Vib.
,
233
, pp.
669
705
.
You do not currently have access to this content.