Abstract

We present experimental verification of pulse shaping in elastic metamaterials together with a procedure to design, fabricate, and verify metamaterial pulse shapers under impact excitation. The split Hopkinson pressure bar (SHPB) test, a fundamental dynamic test introduced more than 70 years ago, often incorporates pulse shaping as a means to alter a stress wave, providing the primary motivation for the presented study. Elastic metamaterials hold promise for enhancing conventional pulse shaping abilities and improving capabilities of the SHPB test. We first design the pulse shaper by numerically optimizing its response using finite element analysis. The pulse shaper consists of repeated unit cells based on a combination of a phononic crystal and a local resonator. Then, we fabricate and test pulse shaper candidates to validate the procedural efficacy. An iterative element corrects inaccuracies in input force and material properties and allows convergence on an appropriate pulse shaper. We carry out this procedure by designing pulse shapers fabricated from 3D-printed polylactic acid (PLA) to achieve an extended dwell acceleration pulse shape. In experimental impact tests, the procedure results in rise, dwell, and fall behaviors comparable to that predicted, effectively confirming the efficacy of the presented procedure and verifying the performance of metamaterial-based pulse shapers.

References

1.
Van Sligtenhorst
,
C.
,
Cronin
,
D. S.
, and
Brodland
,
G. W.
,
2006
, “
High Strain Rate Compressive Properties of Bovine Muscle Tissue Determined Using a Split Hopkinson Bar Apparatus
,”
J. Biomech.
,
39
(
10
), pp.
1852
1858
.
2.
Brown
,
L.
,
Hazell
,
P.
,
Crouch
,
I.
,
Escobedo
,
J.
, and
Brown
,
A.
,
2017
, “
Computational and Split-Hopkinson Pressure-Bar Studies on the Effect of the Jacket During Penetration of An Ak47 Bullet Into Ceramic Armour
,”
Mater. Des.
,
119
, pp.
47
53
.
3.
Li
,
Z.
, and
Lambros
,
J.
,
1999
, “
Determination of the Dynamic Response of Brittle Composites by the Use of the Split Hopkinson Pressure Bar
,”
Compos. Sci. Technol.
,
59
(
7
), pp.
1097
1107
.
4.
Chen
,
W.
,
Zhang
,
B.
, and
Forrestal
,
M. J.
,
1999
, “
A Split Hopkinson Bar Technique for Low-Impedance Materials
,”
Experi. Mech.
,
39
(
2
), pp.
81
85
.
5.
Gerlach
,
R.
,
Kettenbeil
,
C.
, and
Petrinic
,
N.
,
2012
, “
A New Split Hopkinson Tensile Bar Design
,”
Inter. J. Impact Eng.
,
50
, pp.
63
67
.
6.
Rajagopalan
,
S.
, and
Prakash
,
V.
,
1999
, “
A Modified Torsional Kolsky Bar for Investigating Dynamic Friction
,”
Experi. Mech.
,
39
(
4
), pp.
295
303
.
7.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Section B
,
62
(
11
), p.
676
.
8.
Yang
,
Z.
,
Wang
,
Q.
,
Du
,
H.
,
Fan
,
J.
, and
Liang
,
J.
,
2019
, “
Dynamic Characterization Method of Accelerometers Based on the Hopkinson Bar Calibration System
,”
Sens. Actuators., A.
,
293
, pp.
21
28
.
9.
Togami
,
T. C.
,
Brown
,
F. A.
,
Forrestal
,
M. J.
, and
Baker
,
W. E.
,
1998
, “
Performance Evaluation of Accelerometers to 200, 000 G
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
266
268
.
10.
Foster
,
J. T.
,
Frew
,
D. J.
,
Forrestal
,
M. J.
,
Nishida
,
E. E.
, and
Chen
,
W.
,
2012
, “
Shock Testing Accelerometers With a Hopkinson Pressure Bar
,”
Inter. J. Impact Eng.
,
46
, pp.
56
61
.
11.
Togami
,
T. C.
,
Baker
,
W. E.
, and
Forrestal
,
M. J.
,
1996
, “
A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
353
356
.
12.
Noble
,
J.
,
Goldthorpe
,
B.
,
Church
,
P.
, and
Harding
,
J.
,
1999
, “
The Use of the Hopkinson Bar to Validate Constitutive Relations At High Rates of Strain
,”
J. Mech. Phys. Solids.
,
47
(
5
), pp.
1187
1206
.
13.
Jankowiak
,
T.
,
Rusinek
,
A.
, and
Lodygowski
,
T.
,
2011
, “
Validation of the Klepaczko–Malinowski Model for Friction Correction and Recommendations on Split Hopkinson Pressure Bar
,”
Finite Elem. Anal. Design
,
47
(
10
), pp.
1191
1208
.
14.
Chandrasekaran
,
H.
,
M’saoubi
,
R.
, and
Chazal
,
H.
,
2005
, “
Modelling of Material Flow Stress in Chip Formation Process From Orthogonal Milling and Split Hopkinson Bar Tests
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
131
145
.
15.
Church
,
P.
,
Cornish
,
R.
,
Cullis
,
I.
,
Gould
,
P.
, and
Lewtas
,
I.
,
2014
, “
Using the Split Hopkinson Pressure Bar to Validate Material Models
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
372
(
2023
), p.
20130294
.
16.
Clifton
,
R. J.
,
1983
, “
Dynamic Plasticity
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
941
952
.
17.
Nicholas
,
T.
, and
Campbell
,
J.
,
1971
,
The Development and Use of a Torsional Split Hopkinson Bar for Experiments in Dynamic Plasticity
.
Technical Report, Air Force Materials Lab Wright-Patterson AFB, OH
.
18.
Roth
,
C. C.
,
Gary
,
G.
, and
Mohr
,
D.
,
2015
, “
Compact SHPB System for Intermediate and High Strain Rate Plasticity and Fracture Testing of Sheet Metal
,”
Experi. Mech.
,
55
(
9
), pp.
1803
1811
.
19.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie Jr
,
JW
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
ASME Appl. Mech. Rev.
,
57
(
4
), pp.
223
250
.
20.
Duffy
,
J.
,
Campbell
,
J. D.
, and
Hawley
,
R. H.
,
1971
, “
On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum
,”
ASME J. Appl. Mech.
,
38
(
1
), pp.
83
91
.
21.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2002
, “
Pulse Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Experi. Mech.
,
42
(
1
), pp.
93
106
.
22.
Wu
,
X. J.
, and
Gorham
,
D. A.
,
1997
, “
Stress Equilibrium in the Split Hopkinson Pressure Bar Test
,”
Le J. de Phys. IV
,
07
(
C3
), pp.
C391
C396
.
23.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
,
1991
, “
Hopkinson Techniques for Dynamic Recovery Experiments
,”
Proc. R. Soc. London., A.
,
435
(
1894
), pp.
371
391
.
24.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2005
, “
Pulse Shaping Techniques for Testing Elastic-Plastic Materials With a Split Hopkinson Pressure Bar
,”
Experi. Mech.
,
45
(
2
), pp.
186
195
.
25.
Hassan
,
M.
, and
Wille
,
K.
,
2017
, “
Experimental Impact Analysis on Ultra-high Performance Concrete (uhpc) for Achieving Stress Equilibrium (se) and Constant Strain Rate (csr) in Split Hopkinson Pressure Bar (SHPB) Using Pulse Shaping Technique
,”
Const. Building Mater.
,
144
, pp.
747
757
.
26.
Johnson
,
W.
,
Leamy
,
M.
,
DeLima
,
W.
, and
Ruzzene
,
M.
,
2021
, “
Phononic Materials for Pulse Shaping in Elastic Waveguides Motivated by Shock Testing
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041012
.
27.
Mu
,
D.
,
Shu
,
H.
,
Zhao
,
L.
, and
An
,
S.
,
2020
, “
A Review of Research on Seismic Metamaterials
,”
Adv. Eng. Mater.
,
22
(
4
), p.
1901148
.
28.
Liu
,
Y.
, and
Zhang
,
X.
,
2011
, “
Metamaterials: A New Frontier of Science and Technology
,”
Chem. Soc. Rev.
,
40
(
5
), p.
2494
.
29.
Zheludev
,
N. I.
, and
Kivshar
,
Y. S.
,
2012
, “
From Metamaterials to Metadevices
,”
Nat. Mater.
,
11
(
11
), pp.
917
924
.
30.
Del Vescovo
,
D.
, and
Giorgio
,
I.
,
2014
, “
Dynamic Problems for Metamaterials: Review of Existing Models and Ideas for Further Research
,”
Inter. J. Eng. Sci.
,
80
, pp.
153
172
.
31.
Muhammad
,
A.
, and
Lim
,
C. W.
,
2022
, “
From Photonic Crystals to Seismic Metamaterials: A Review Via Phononic Crystals and Acoustic Metamaterials
,”
Arch. Comput. Methods Eng.
,
29
(
2
), pp.
1137
1198
.
32.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
33.
Zhao
,
Y.
,
Chen
,
Y.
, and
Zhou
,
Y.
,
2019
, “
Novel Mechanical Models of Tensile Strength and Elastic Property of FDM Am Pla Materials: Experimental and Theoretical Analyses
,”
Mater. Design
,
181
, p.
108089
.
34.
Abeykoon
,
C.
,
Sri-Amphorn
,
P.
, and
Fernando
,
A.
,
2020
, “
Optimization of Fused Deposition Modeling Parameters for Improved Pla and Abs 3d Printed Structures
,”
Inter. J. Lightweight Mater. Manuf.
,
3
(
3
), pp.
284
297
.
You do not currently have access to this content.