Abstract

Rotors are used to transfer power from one component to the other component in various rotor dynamics applications like steam turbines, aerospace systems, and power generators. In certain applications, the seal is an important and inevitable component of the rotor dynamic system. The linear dynamics of the rotor is converted into nonlinear in the presence of a seal. The presence of a seal, can sometimes, trigger self-excited vibrations in rotor/seal systems. Generally, the amplitude of vibration during such vibrations is several times higher than normal steady-state vibrations. Due to this, other faults like transverse crack initialization and rotor/stator rub get accelerated. The rotating machinery working at high spinning speeds is more prone to this type of instability. Hence, the stability limits of the rotor/seal system must be known in advance for the safe operation of the rotating machinery. The dynamic behavior of such a system qualitatively varies corresponding to different system parameters of the rotating machinery. Cumbersome analytical methods have been used in the past for bifurcation analysis of rotor/seal systems. In the present work, system bifurcations have been investigated using a subharmonic sampling rate strategy. The proposed method is easy to implement and numerically efficient. The effect of various parameters like the spinning speed of the rotor, unstable mass, and seal clearance is investigated for the stability of the rotor/seal system. Experimental testing is done to verify the simulation results.

References

1.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs’ Lubrication Equation
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
429
436
.
2.
Yan
,
D.
,
Chen
,
Q.
,
Zheng
,
Y.
,
Wang
,
W.
, and
An
,
Y.
,
2019
, “
Dynamic Evolution of a Bulb Hydroelectric Generating Unit Considering Effects of the Blades
,”
Energy Convers. Manage.
,
185
, pp.
183
201
.
3.
Rao
,
J. S.
,
1991
,
Rotor Dynamics
, 2nd ed.,
Wiley
,
New York
.
4.
Sinou
,
J.-J.
,
2009
, “
Experimental Response and Vibrational Characteristics of a Slotted Rotor
,”
Comm. Nonlinear Sci. Numer. Simul.
,
14
, pp.
3179
3194
.
5.
Gladwell
,
G. M. L.
, and
Bishop
,
R. E. D.
,
1959
, “
The Vibration of Rotating Shafts Supported in Flexible Bearings
,”
J. Mech. Eng. Sci.
,
1
(
3
), pp.
195
206
.
6.
Alford
,
J. S.
,
1965
, “
Protecting Turbomachinery From Self-Excited Rotor Whirl
,”
J. Eng. Power
,
87
(
4
), pp.
333
343
.
7.
Lund
,
J. W.
,
1987
, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
,
109
(
1
), pp.
37
41
.
8.
Muszynska
,
A.
,
1988
, “
Improvements in Lightly Loaded Rotor/Bearing and Rotor/Seal Models
,”
ASME J. Vib. Acoust.
,
110
(
2
), pp.
129
136
.
9.
Czołczyński
,
K.
,
1996
, “
How to Obtain Stiffness and Damping Coefficients of Gas Bearings
,”
Wear
,
201
(
1
), pp.
265
275
.
10.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings. Part I: Theoretical Analysis
,”
Nonlinear Dyn.
,
14
(
1
), pp.
57
87
.
11.
Zhang
,
W.
, and
Xu
,
X.
,
2000
, “
Modeling of Nonlinear Oil-Film Force Acting on a Journal With Unsteady Motion and Nonlinear Instability Analysis Under the Model
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
1
.
12.
Ding
,
Q.
,
Cooper
,
J. E.
, and
Leung
,
A. Y. T.
,
2002
, “
Hopf Bifurcation Analysis of a Rotor/Seal System
,”
J. Sound Vib.
,
252
(
5
), pp.
817
833
.
13.
Ding
,
Q.
, and
Leung
,
A. Y. T.
,
2003
, “
Non-stationary Processes of Rotor/Bearing System in Bifurcations
,”
J. Sound Vib.
,
268
(
1
), pp.
33
48
.
14.
Zhao
,
S.
,
Xu
,
H.
,
Meng
,
G.
, and
Zhu
,
J.
,
2005
, “
Stability and Response Analysis of Symmetrical Single-Disk Flexible Rotor-Bearing System
,”
Tribol. Int.
,
38
(
8
), pp.
749
756
.
15.
Akhmetkhanov
,
R.
,
Banakh
,
L.
, and
Nikiforov
,
A.
,
2005
, “
Flow-Coupled Vibrations of Rotor and Seal
,”
J. Vib. Control
,
11
(
7
), pp.
887
901
.
16.
Li
,
S.
,
Xu
,
Q.
, and
Zhang
,
X.
,
2007
, “
Nonlinear Dynamic Behaviors of a Rotor–Labyrinth Seal System
,”
Nonlinear Dyn.
,
47
(
4
), pp.
321
329
.
17.
Cheng
,
M.
,
Meng
,
G.
, and
Jing
,
J.
,
2007
, “
Numerical and Experimental Study of a Rotor-Bearing–Seal System
,”
Mech. Mach. Theory
,
42
(
8
), pp.
1043
1057
.
18.
Xiaoyao
,
S.
, and
Mei
,
Z.
,
2009
, “
Effect of the Seal Force on Nonlinear Dynamics and Stability of the Rotor-Bearing–Seal System
,”
J. Vib. Control
,
15
(
2
), pp.
197
217
.
19.
Laha
,
S. K.
, and
Kakoty
,
S. K.
,
2011
, “
Non-linear Dynamic Analysis of a Flexible Rotor Supported on Porous Oil Journal Bearings
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1617
1631
.
20.
Li
,
W.
,
Yang
,
Y.
,
Sheng
,
D.
, and
Chen
,
J.
,
2011
, “
A Novel Nonlinear Model of Rotor/Bearing/Seal System and Numerical Analysis
,”
Mech. Mach. Theory
,
46
(
5
), pp.
618
631
.
21.
Wensheng
,
M.
,
Hai
,
H.
,
Guoquan
,
F.
,
Zhaobo
,
C.
, and
Kirk
,
R. G.
,
2015
, “
Labyrinth Seals Diameter and Length Effect Study on Nonlinear Dynamics
,”
Procedia Eng.
,
99
, pp.
1358
1364
.
22.
Chatzisavvas
,
I.
,
Boyaci
,
A.
,
Koutsovasilis
,
P.
, and
Schweizer
,
B.
,
2016
, “
Influence of Hydrodynamic Thrust Bearings on the Nonlinear Oscillations of High-Speed Rotors
,”
J. Sound Vib.
,
380
, pp.
224
241
.
23.
Subramanian
,
S.
,
Sekhar
,
A. S.
, and
Prasad
,
B. V. S. S. S.
,
2016
, “
Rotordynamic Characteristics of Rotating Labyrinth Gas Turbine Seal With Centrifugal Growth
,”
Tribol. Int.
,
97
, pp.
349
359
.
24.
Yan
,
D.
,
Wang
,
W.
, and
Chen
,
Q.
,
2018
, “
“Fractional-Order Modeling and Dynamic Analyses of a Bending–Torsional Coupling Generator Rotor Shaft System With Multiple Faults,” Chaos
,”
Solitons Fractals
,
110
, pp.
1
15
.
25.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.
26.
Xu
,
B.
,
Chen
,
D.
,
Zhang
,
H.
, and
Zhou
,
R.
,
2015
, “
Dynamic Analysis and Modeling of a Novel Fractional-Order Hydro-Turbine-Generator Unit
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1263
1274
.
27.
Cao
,
J.
,
Ma
,
C.
,
Jiang
,
Z.
, and
Liu
,
S.
,
2011
, “
Nonlinear Dynamic Analysis of Fractional Order rub-Impact Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1443
1463
.
28.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2005
, “
Prediction of the Stability Envelope of Rotor-Bearing System
,”
ASME J. Vib. Acoust.
,
128
(
2
), pp.
197
202
.
29.
Anastasopoulos
,
L.
, and
Chasalevris
,
A.
,
2022
, “
Bifurcations of Limit Cycles in Rotating Shafts Mounted on Partial Arc and Lemon Bore Journal Bearings in Elastic Pedestals
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
6
), p.
061003
.
30.
Boyaci
,
A.
,
Hetzler
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
.
31.
Boyaci
,
A.
,
Seemann
,
W.
, and
Proppe
,
C.
,
2010
, “
Stability and Bifurcations of Rotors in Fluid Film Bearings
,”
AMM·Proc. Appl. Math. Mech.
,
10
, pp.
235
236
. DOI 10.1002/pamm.201010110
32.
Chasalevris
,
A.
,
2020
, “
Stability and Hopf Bifurcations in Rotor-Bearing-Foundation Systems of Turbines and Generators
,”
Tribol. Int.
,
145
, p.
106154
.
33.
Amamou
,
A.
, and
Chouchane
,
M.
,
2014
, “
Nonlinear Stability Analysis of Long Hydrodynamic Journal Bearings Using Numerical Continuation
,”
Mech. Mach. Theory
,
72
, pp.
17
24
.
You do not currently have access to this content.