Abstract

The delayed resonator (DR) is an active vibration absorber, which yields ideal vibration suppression at its resonance frequency. In this study, we further complement the DR design in a distinctive mechanical path by introducing an amplifying mechanism (AM), so the creation of DRA. Very different from the existing works that focus more on how to enhance the ideal vibration suppression of the DR, we are interested in how the DR behaves under uncertainties and how can the newly proposed DRA abate the arising negative effects. First, we study the effects of such uncertainties in detecting the excitation frequency on the quality of vibration suppression, working space of the absorber, and energy cost. Then, we discuss how the control parameter perturbation affects the system stability. A comparative study between the classic DR and the proposed DRA is presented throughout the text, showing that the enhanced performance and robustness characteristics enabled by the AM are almost all-around while posing no additional controller complexity. We also show using spectral analysis that the AM can also enhance the transient behavior of the system. Finally, three numerical simulations included as core studies vividly exhibit DRA’s practical strength.

References

1.
Olgac
,
N.
, and
Holm-Hansen
,
B.
,
1994
, “
A Novel Active Vibration Absorption Technique: Delayed Resonator
,”
J. Sound Vib.
,
176
(
1
), pp.
93
104
.
2.
Vyhlídal
,
T.
,
Olgac
,
N.
, and
Kuvcera
,
V.
,
2014
, “
Delayed Resonator With Acceleration Feedback—Complete Stability Analysis by Spectral Methods and Vibration Absorber Design
,”
J. Sound Vib.
,
333
(
25
), pp.
6781
6795
.
3.
Kučera
,
V.
,
Pilbauer
,
D.
,
Vyhlídal
,
T.
, and
Olgac
,
N.
,
2017
, “
Extended Delayed Resonators—Design and Experimental Verification
,”
Mechatronics
,
41
, pp.
29
44
.
4.
Pilbauer
,
D.
,
Vyhlídal
,
T.
, and
Olgac
,
N.
,
2016
, “
Delayed Resonator With Distributed Delay in Acceleration Feedback—Design and Experimental Verification
,”
IEEE/ASME Trans. Mechatron.
,
21
(
4
), pp.
2120
2131
.
5.
Eris
,
O.
,
Alikoc
,
B.
, and
Ergenc
,
A. F.
,
2018
, “
A New Delayed Resonator Design Approach for Extended Operable Frequency Range
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041003
.
6.
Kammer
,
A. S.
, and
Olgac
,
N.
,
2016
, “
Delayed-Feedback Vibration Absorbers to Enhance Energy Harvesting
,”
J. Sound Vib.
,
363
, pp.
54
67
.
7.
Karama
,
M.
,
Hamdi
,
M.
, and
Habbad
,
M.
,
2021
, “
Energy Harvesting in a Nonlinear Energy Sink Absorber Using Delayed Resonators
,”
Nonlinear Dyn.
,
105
(
1
), pp.
113
129
.
8.
Vyhlídal
,
T.
,
Pilbauer
,
D.
,
Alikoç
,
B.
, and
Michiels
,
W.
,
2019
, “
Analysis and Design Aspects of Delayed Resonator Absorber With Position, Velocity Or Acceleration Feedback
,”
J. Sound Vib.
,
459
, p.
114831
.
9.
Valášek
,
M.
,
Olgac
,
N.
, and
Neusser
,
Z.
,
2019
, “
Real-Time Tunable Single-Degree of Freedom, Multiple-Frequency Vibration Absorber
,”
Mech. Syst. Signal Process.
,
133
, p.
106244
.
10.
Zhang
,
Y.
,
Ren
,
C.
,
Ma
,
K.
,
Xu
,
Z.
,
Zhou
,
P.
, and
Chen
,
Y.
,
2022
, “
Effect of Delayed Resonator on the Vibration Reduction Performance of Vehicle Active Seat Suspension
,”
J. Low Frequency Noise Vib. Active Control
,
41
(
1
), pp.
387
404
.
11.
Jenkins
,
R.
, and
Olgac
,
N.
,
2019
, “
Real-Time Tuning of Delayed Resonator-Based Absorbers for Spectral and Spatial Variations
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021011
.
12.
Olgac
,
N.
, and
Jenkins
,
R.
,
2020
, “
Actively Tuned Noncollocated Vibration Absorption: An Unexplored Venue in Vibration Science and a Benchmark Problem
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
294
304
.
13.
Šika
,
Z.
,
Vyhlídal
,
T.
, and
Neusser
,
Z.
,
2021
, “
Two-Dimensional Delayed Resonator for Entire Vibration Absorption
,”
J. Sound Vib.
,
500
, p.
116010
.
14.
Vyhlídal
,
T.
,
Michiels
,
W.
,
Neusser
,
Z.
,
Bušek
,
J.
, and
Šika
,
Z.
,
2022
, “
Analysis and Optimized Design of an Actively Controlled Two-Dimensional Delayed Resonator
,”
Mech. Syst. Signal Process.
,
178
, p.
109195
.
15.
Liu
,
C.
,
Jing
,
X.
, and
Li
,
F.
,
2015
, “
Vibration Isolation Using a Hybrid Lever-Type Isolation System With an X-shape Supporting Structure
,”
Int. J. Mech. Sci.
,
98
, pp.
169
177
.
16.
Ling
,
P.
,
Miao
,
L.
,
Zhang
,
W.
,
Wu
,
C.
, and
Yan
,
B.
,
2022
, “
Cockroach-Inspired Structure for Low-Frequency Vibration Isolation
,”
Mech. Syst. Signal Process.
,
171
, p.
108955
.
17.
Liu
,
C.
,
Jing
,
X.
, and
Chen
,
Z.
,
2016
, “
Band Stop Vibration Suppression Using a Passive X-shape Structured Lever-Type Isolation System
,”
Mech. Syst. Signal Process.
,
68
, pp.
342
353
.
18.
Yan
,
B.
,
Wang
,
Z.
,
Ma
,
H.
,
Bao
,
H.
,
Wang
,
K.
, and
Wu
,
C.
,
2021
, “
A Novel Lever-Type Vibration Isolator With Eddy Current Damping
,”
J. Sound Vib.
,
494
, p.
115862
.
19.
Yan
,
B.
,
Yu
,
N.
, and
Wu
,
C.
,
2022
, “
A State-of-the-Art Review on Low-Frequency Nonlinear Vibration Isolation With Electromagnetic Mechanisms
,”
Appl. Math. Mech.
,
43
(
7
), pp.
1045
1062
.
20.
Asai
,
T.
,
Araki
,
Y.
,
Kimura
,
K.
, and
Masui
,
T.
,
2017
, “
Adjustable Vertical Vibration Isolator With a Variable Ellipse Curve Mechanism
,”
Earthquake Eng. Struct. Dyn.
,
46
(
8
), pp.
1345
1366
.
21.
Yan
,
B.
,
Yu
,
N.
,
Wang
,
Z.
,
Wu
,
C.
,
Wang
,
S.
, and
Zhang
,
W.
,
2022
, “
Lever-Type Quasi-Zero Stiffness Vibration Isolator With Magnetic Spring
,”
J. Sound Vib.
,
527
, p.
116865
.
22.
Wang
,
X.
,
Yu
,
N.
,
Wu
,
C.
,
Zhang
,
W.
, and
Yan
,
B.
,
2022
, “
Lever-Type High-Static-Low-Dynamic-Stiffness Vibration Isolator With Electromagnetic Shunt Damping
,”
Int. J. Non-Linear Mech.
,
146
, p.
104128
.
23.
Taniker
,
S.
, and
Yilmaz
,
C.
,
2017
, “
Generating Ultra Wide Vibration Stop Bands by a Novel Inertial Amplification Mechanism Topology With Flexure Hinges
,”
Int. J. Solids Struct.
,
106
, pp.
129
138
.
24.
Zhou
,
J.
,
Dou
,
L.
,
Wang
,
K.
,
Xu
,
D.
, and
Ouyang
,
H.
,
2019
, “
A Nonlinear Resonator With Inertial Amplification for Very Low-Frequency Flexural Wave Attenuations in Beams
,”
Nonlinear Dyn.
,
96
(
1
), pp.
647
665
.
25.
Shen
,
Y.
,
Xing
,
Z.
,
Yang
,
S.
, and
Sun
,
J.
,
2019
, “
Parameters Optimization for a Novel Dynamic Vibration Absorber
,”
Mech. Syst. Signal Process.
,
133
, p.
106282
.
26.
Sui
,
P.
,
Shen
,
Y.
,
Yang
,
S.
, and
Wang
,
J.
,
2021
, “
Parameters Optimization of Dynamic Vibration Absorber Based on Grounded Stiffness, Inerter, and Amplifying Mechanism
,”
J. Vib. Control.
, pp.
1
13
.
27.
Cheng
,
Z.
,
Palermo
,
A.
,
Shi
,
Z.
, and
Marzani
,
A.
,
2020
, “
Enhanced Tuned Mass Damper Using an Inertial Amplification Mechanism
,”
J. Sound Vib.
,
475
, p.
115267
.
28.
Desjardins
,
R. A.
, and
Hooper
,
W.
,
1980
, “
Antiresonant Rotor Isolation for Vibration Reduction
,”
J. Amer. Helicopter Soc.
,
25
(
3
), pp.
46
55
.
29.
Braun
,
D.
,
1982
, “
Development of Antiresonance Force Isolators for Helicopter Vibration Reduction
,”
J. Amer. Helicopter Soc.
,
27
(
4
), pp.
37
44
.
30.
Gao
,
Q.
,
Kammer
,
A. S.
,
Zalluhoglu
,
U.
, and
Olgac
,
N.
,
2015
, “
Critical Effects of the Polarity Change in Delayed States Within an LTI Dynamics With Multiple Delays
,”
IEEE Trans. Autom. Control
,
60
(
11
), pp.
3018
3022
.
31.
Gao
,
Q.
,
Kammer
,
A. S.
,
Zalluhoglu
,
U.
, and
Olgac
,
N.
,
2015
, “
Combination of Sign Inverting and Delay Scheduling Control Concepts for Multiple-Delay Dynamics
,”
Syst. Control Lett.
,
77
, pp.
55
62
.
32.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.
33.
Hale
,
J. K.
, and
Lunel
,
S. M. V.
,
2013
,
Introduction to Functional Differential Equations
,
Springer Science & Business Media
,
New York
.
34.
Hale
,
J. K.
,
Infante
,
E. F.
, and
Tsen
,
F.-S. P.
,
1985
, “
Stability in Linear Delay Equations
,”
J. Math. Anal. Appl.
,
105
(
2
), pp.
533
555
.
35.
Vyhlidal
,
T.
, and
Zitek
,
P.
,
2009
, “
Mapping Based Algorithm for Large-Scale Computation of Quasi-polynomial Zeros
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
171
177
.
36.
Kuo
,
B. C.
, and
Golnaraghi
,
M. F.
,
1995
,
Automatic Control Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.