Abstract

In this paper, vibration analysis of rotating combined thin-walled shells with multiple conical segments has been carried out. Considering the centrifugal force, Coriolis force, and initial hoop tension due to rotation, the elastic strain energy and kinetic energy of a single rotating conical shell are expressed based on Love’s first approximation theory. The artificial springs are introduced to simulate the connections of adjacent conical shells and the boundaries of the rotating combined thin-walled shells. Taking characteristic orthogonal polynomial series as the admissible functions, the Rayleigh–Ritz method is employed to derive the frequency equations of the combined shell and corresponding vibration characteristics are then obtained. Given that the cylindrical shell and annular plates can be regarded as conical shells with semi-vertex angles of 0 deg and 90 deg, respectively, the solution given is also available for the vibration analysis of rotating combined thin-walled shells comprised of any segments of cylindrical, conical shell, and annular plate. As examples of rotating combined thin-walled shells with two and five segments, vibrations of rotating conical–conical joined shell and cylindrical–conical–cylindrical–conical–cylindrical joined shell are investigated in the paper. Traveling wave frequencies and corresponding mode shapes are shown, and the effects of rotating speed, circumferential wave number, spring stiffness, and semi-vertex angles on the vibration behavior are given in detail.

References

1.
Talebitooti
,
M.
,
2016
, “
Thermal Effect on Free Vibration of Ring-Stiffened Rotating Functionally Graded Conical Shell With Clamped Ends
,”
Mech. Adv. Mater. Struc.
,
25
(
2
), pp.
155
165
.
2.
Daneshjou
,
K.
,
Talebitooti
,
M.
, and
Talebitooti
,
R.
,
2013
, “
Free Vibration and Critical Speed of Moderately Thick Rotating Laminated Composite Conical Shell Using Generalized Differential Quadrature Method
,”
Appl. Math. Mech.-Engl. Ed.
,
34
(
4
), pp.
437
456
.
3.
Sun
,
S.
,
Cao
,
D.
, and
Han
,
Q.
,
2013
, “
Vibration Studies of Rotating Cylindrical Shells With Arbitrary Edges Using Characteristic Orthogonal Polynomials in the Rayleigh–Ritz Method
,”
Int. J. Mech. Sci.
,
68
, pp.
180
189
.
4.
Zhang
,
X. M.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2001
, “
Frequency Analysis of Cylindrical Panels Using a Wave Propagation Approach
,”
Appl. Acoust.
,
62
(
5
), pp.
527
543
.
5.
Chen
,
Y. H.
,
Jin
,
G. Y.
, and
Liu
,
Z. G.
,
2013
, “
Free Vibration Analysis of Circular Cylindrical Shell With Non-Uniform Elastic Boundary Constraints
,”
Int. J. Mech. Sci.
,
74
, pp.
120
132
.
6.
Irie
,
T.
,
Yamada
,
G.
, and
Muramoto
,
Y.
,
1984
, “
Free Vibration of Joined Conical-Cylindrical Shells
,”
J. Sound Vib.
,
95
(
1
), pp.
31
39
.
7.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
,
2010
, “
Free Vibrational Characteristics of Isotropic Coupled Cylindrical-Conical Shells
,”
J. Sound Vib.
,
329
(
6
), pp.
733
751
.
8.
Kang
,
J. H.
,
2012
, “
Three-Dimensional Vibration Analysis of Joined Thick Conical-Cylindrical Shells of Revolution With Variable Thickness
,”
J. Sound Vib.
,
331
(
18
), pp.
4187
4198
.
9.
Qu
,
Y. G.
,
Chen
,
Y.
,
Long
,
X. H.
,
Hua
,
H. X.
, and
Meng
,
G.
,
2013
, “
A Variational Method for Free Vibration Analysis of Joined Cylindrical-Conical Shells
,”
J. Vib. Control
,
19
(
16
), pp.
2319
2334
.
10.
Ma
,
X. L.
,
Jin
,
G. Y.
,
Xiong
,
Y. P.
, and
Liu
,
Z. G.
,
2014
, “
Free and Forced Vibration Analysis of Coupled Conical-Cylindrical Shells With Arbitrary Boundary Conditions
,”
Int. J. Mech. Sci.
,
88
, pp.
122
137
.
11.
Pang
,
F. Z.
,
Wu
,
C.
,
Song
,
H. B.
, and
Li
,
H. C.
,
2017
, “
The Free Vibration Characteristics of Isotropic Coupled Conical-Cylindrical Shells Based on the Precise Integration Transfer Matrix Method
,”
Curved Layer. Struct.
,
4
(
1
), pp.
272
287
.
12.
Lee
,
J.
,
2018
, “
Free Vibration Analysis of Joined Conical-Cylindrical Shells by Matched Fourier-Chebyshev Collocation Method
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4601
4612
.
13.
Zarei
,
M.
,
Rahimi
,
G. H.
, and
Hemmatnezhad
,
M.
,
2021
, “
On the Free Vibrations of Joined Grid-Stiffened Composite Conical-Cylindrical Shells
,”
Thin Walled Struct.
,
161
, p.
107465
.
14.
Kouchakzadeh
,
M. A.
, and
Shakouri
,
M.
,
2014
, “
Free Vibration Analysis of Joined Cross-Ply Laminated Conical Shells
,”
Int. J. Mech. Sci.
,
78
, pp.
118
125
.
15.
Sarkheil
,
S.
,
Foumani
,
M. S.
, and
Navazi
,
H. M.
,
2016
, “
Theoretical and Experimental Analysis of the Free Vibrations of a Shell Made of N Cone Segments Joined Together
,”
Thin Walled Struct.
,
108
, pp.
416
427
.
16.
Bagheri
,
H.
,
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2017
, “
Free Vibration of Joined Conical-Conical Shells
,”
Thin Walled Struct.
,
120
, pp.
446
457
.
17.
Izadi
,
M. H.
,
Hosseini-Hashemi
,
S.
, and
Korayem
,
M. H.
,
2018
, “
Analytical and FEM Solutions for Free Vibration of Joined Cross-Ply Laminated Thick Conical Shells Using Shear Deformation Theory
,”
Arch. Appl. Mech.
,
88
(
12
), pp.
2231
2246
.
18.
Soureshjani
,
A. H.
,
Talebitooti
,
R.
, and
Talebitooti
,
M.
,
2020
, “
Thermal Effects on the Free Vibration of Joined FG-CNTRC Conical-Conical Shells
,”
Thin Walled Struct.
,
156
, p.
106960
.
19.
Fu
,
T.
,
Wu
,
X.
,
Xiao
,
Z. M.
,
Chen
,
Z. B.
, and
Li
,
B.
,
2021
, “
Analysis of Vibration Characteristics of FGM Sandwich Joined Conical-Conical Shells Surrounded by Elastic Foundations
,”
Thin Walled Struct.
,
165
, p.
107979
.
20.
Damercheloo
,
A. R.
,
Khorshidvand
,
A. R.
,
Khorsandijou
,
S. M.
, and
Jabbari
,
M.
,
2021
, “
Free Vibrational Characteristics of GNP-Reinforced Joined Conical-Conical Shells With Different Boundary Conditions
,”
Thin Walled Struct.
,
169
, p.
108287
.
21.
Cheng
,
L.
, and
Nicolas
,
J.
,
1992
, “
Free Vibration Analysis of a Cylindrical Shell-Circular Plate System With General Coupling and Various Boundary Conditions
,”
J. Sound Vib.
,
155
(
2
), pp.
231
247
.
22.
Lee
,
Y. S.
,
Yang
,
M. S.
, and
Kim
,
H. S.
,
2002
, “
A Study on the Free Vibration of The Joined Cylindrical-Spherical Shell Structures
,”
Comput. Civil Struct. Eng.
,
80
(
27–30
), pp.
2405
2414
.
23.
Liang
,
S.
, and
Chen
,
H. L.
,
2006
, “
The Natural Vibration of a Conical Shell With an Annular End Plate
,”
J. Sound Vib.
,
294
(
4–5
), pp.
927
943
.
24.
Wu
,
S. H.
,
Qu
,
Y. G.
, and
Hua
,
H. X.
,
2013
, “
Vibrations Characteristics of Joined Cylindrical-Spherical Shell With Elastic-Support Boundary Conditions
,”
J. Mech. Sci. Technol.
,
27
(
5
), pp.
1265
1272
.
25.
Lee
,
J.
,
2017
, “
Free Vibration Analysis of Joined Spherical-Cylindrical Shells by Matched Fourier-Chebyshev Expansions
,”
Int. J. Mech. Sci.
,
122
, pp.
53
62
.
26.
Tang
,
Q. S.
,
Li
,
C. F.
,
She
,
H. X.
, and
Wen
,
B. C.
,
2018
, “
Vibration Analysis of Bolted Joined Cylindrical-Cylindrical Shell Structure Under General Connection Condition
,”
Appl. Acoust.
,
140
, pp.
236
247
.
27.
Bagheri
,
H.
,
Kiani
,
Y.
,
Bagheri
,
N.
, and
Eslami
,
M. R.
,
2020
, “
Free Vibration of Joined Cylindrical-Hemispherical FGM Shells
,”
Arch. Appl. Mech.
,
90
(
10
), pp.
2185
2199
.
28.
He
,
Q.
,
Dai
,
H. L.
,
Gui
,
Q. F.
, and
Li
,
J. J.
,
2020
, “
Analysis of Vibration Characteristics of Joined Cylindrical-Spherical Shells
,”
Eng. Struct.
,
218
, p.
110767
.
29.
Ma
,
X. L.
,
Jin
,
G. Y.
,
Shi
,
S. X.
,
Ye
,
T. G.
, and
Liu
,
Z. G.
,
2017
, “
An Analytical Method for Vibration Analysis of Cylindrical Shells Coupled With Annular Plate Under General Elastic Boundary and Coupling Conditions
,”
J. Vib. Control
,
23
(
2
), pp.
305
328
.
30.
Wu
,
S. H.
,
Qu
,
Y. G.
, and
Hua
,
H. X.
,
2013
, “
Vibration Characteristics of a Spherical-Cylindrical-Spherical Shell by a Domain Decomposition Method
,”
Mech. Res. Commun.
,
49
, pp.
17
26
.
31.
Xie
,
K.
,
Chen
,
M.
, and
Li
,
Z.
,
2017
, “
Free and Forced Vibration Analysis of Ring-Stiffened Conical–Cylindrical–Spherical Shells Through a Semi-Analytic Method
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031001
.
32.
Bagheri
,
H.
,
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2018
, “
Free Vibration of Joined Conical-Cylindrical-Conical Shells
,”
Acta Mech.
,
229
(
7
), pp.
2751
2764
.
33.
Sobhani
,
E.
,
Arbabian
,
A.
,
Civalek
,
O.
, and
Avcar
,
M.
,
2021
, “
The Free Vibration Analysis of Hybrid Porous Nanocomposite Joined Hemispherical-Cylindrical-Conical Shells
,”
Eng. Comput.
, pp.
1
28
.
34.
Ninh
,
D. G.
,
Minh
,
V. T.
,
Van Tuan
,
N.
,
Hung
,
N. C.
, and
Van Phong
,
D.
,
2021
, “
Novel Numerical Approach for Free Vibration of Nanocomposite Joined Conical-Cylindrical-Conical Shells
,”
AIAA J.
,
59
(
1
), pp.
366
378
.
35.
Sobhani
,
E.
,
Masoodi
,
A. R.
, and
Ahmadi-Pari
,
A. R.
,
2021
, “
Vibration of FG-CNT and FG-GNP Sandwich Composite Coupled Conical-Cylindrical-Conical Shell
,”
Compos. Struct.
,
273
, p.
114281
.
36.
Sarkheil
,
S.
, and
Foumani
,
M. S.
,
2016
, “
Free Vibrational Characteristics of Rotating Joined Cylindrical-Conical Shells
,”
Thin Walled Struct.
,
107
, pp.
657
670
.
37.
Sarkheil
,
S.
,
Foumani
,
M. S.
, and
Navazi
,
H. M.
,
2017
, “
Free Vibrations of a Rotating Shell Made of P Joined Cones
,”
Int. J. Mech. Sci.
,
124
, pp.
83
94
.
38.
Qin
,
Z. Y.
,
Yang
,
Z. B.
,
Zu
,
J.
, and
Chu
,
F. L.
,
2018
, “
Free Vibration Analysis of Rotating Cylindrical Shells Coupled With Moderately Thick Annular Plates
,”
Int. J. Mech. Sci.
,
142
, pp.
127
139
.
39.
Chai
,
Q. D.
, and
Wang
,
Y. Q.
,
2021
, “
A General Approach for Free Vibration Analysis of Spinning Joined Conical-Cylindrical Shells With Arbitrary Boundary Conditions
,”
Thin Walled Struct.
,
168
, p.
108243
.
40.
Leissa
,
A. W.
,
1993
,
Vibration of Shell
,
Acoustical Society of America
,
New York
.
41.
Magrab
,
E. B.
,
2000
,
An Engineer’s Guide to MATLAB
,
Prentice Hall
,
Hoboken, NJ
.
You do not currently have access to this content.