Abstract

External fluctuation torques acting on gear trains having clearances often cause vibro-impact motions with resultant rattle noise issues. In this study, an impact velocity-based rattle severity parameter that correlates with the resultant rattling noise is proposed for multimesh gear trains. An experimental setup is employed to measure torsional vibro-impact motions and the corresponding sound pressure levels of a three-axis gear train under various torque fluctuation conditions. A discrete torsional model of the experimental setup is developed and validated through comparisons to the vibration measurements. An impact velocity-based rattle severity index defined from the predicted response is proposed and shown to correlate well with the measured rattle noise sound pressure levels within a wide range of operating conditions. The demonstrated ability of the proposed rattle severity index in tracking rattle noise allows for the assessment of rattle consequences of a multimesh drivetrain solely from its predicted torsional response.

References

1.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Experimental and Theoretical Investigation of Vibro-Impact Motions of a Gear Pair Subjected to Torque Fluctuations to Define a Rattle Noise Severity Index
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041001
.
2.
Comparin
,
R. J.
, and
Singh
,
R.
,
1990
, “
An Analytical Study of Automotive Neutral Gear Rattle
,”
ASME J. Mech. Des.
,
112
(
2
), pp.
237
245
.
3.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
,
1991
, “
Theoretical and Experimental Investigations of Gear-Rattling
,”
Nonlinear Dyn.
,
2
(
5
), pp.
367
338
.
4.
Fernandez-Del-Rincon
,
A.
,
Diez-Ibarbia
,
A.
, and
Theodossiades
,
S.
,
2019
, “
Gear Transmission Rattle: Assessment of Meshing Forces Under Hydrodynamic Lubrication
,”
Appl. Acoust.
,
144
, pp.
85
95
.
5.
Tangasawi
,
O.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2007
, “
Lightly Loaded Lubricated Impacts: Idle Gear Rattle
,”
J. Sound Vib.
,
308
(
3–5
), pp.
418
430
.
6.
Moetakef
,
M.
,
Zouani
,
A.
,
Felice
,
M.
,
Baumann
,
J.
,
Campbell
,
B.
,
Pesheck
,
E.
,
Baudson
,
R.
, and
Cabrol
,
M.
,
2019
, “
An Analytical Methodology for Engine Gear Rattle and Whine Assessment and Noise Simulation
,”
SAE Technical Papers 2019-01-07
,
Detroit MI
,
Apr. 9–11
.
7.
Zhao
,
H. A.
, and
Reinhart
,
T. E.
,
1999
, “
The Influence of Diesel Engine Architecture on Noise Levels
,”
SAE Technical Paper 1999-01-1747
,
Detroit, MI
,
May 17–20
.
8.
Huang
,
J. C.
, and
Abram
,
K. R.
,
1999
, “
Cummins 4B Noise Reduction Anti-Backlash Camshaft Gear
,”
SAE Technical Paper 1999-01-1761
,
Detroit, MI
,
May 17–20
.
9.
Joshi
,
Y. V.
, and
Kelleher
,
J. E.
,
2014
, “
Gear Train Mesh Efficiency Study: The Effects of an Anti-Backlash Gear
,”
SAE Int. J. Commer. Veh.
,
7
(
1
), pp.
271
277
.
10.
Cao
,
R.
,
Mi
,
C.
, and
Cheng
,
M.
,
2012
, “
Quantitative Comparison of Flux-Switching Permanent-Magnet Motors With Interior Permanent Magnet Motor for EV, HEV, and PHEV Applications
,”
IEEE Trans. Magn.
,
48
(
8
), pp.
2374
2384
.
11.
Hwang
,
M. H.
,
Lee
,
H. S.
, and
Cha
,
H. R.
,
2018
, “
Analysis of Torque Ripple and Cogging Torque Reduction in Electric Vehicle Traction Platform Applying Rotor Notched Design
,”
Energies
,
11
(
11
), p.
3053
.
12.
Yan
,
W.
,
Chen
,
H.
,
Liao
,
S.
,
Liu
,
Y.
, and
Cheng
,
H.
,
2021
, “
Design of a Low-Ripple Double-Modular-Stator Switched Reluctance Machine for Electric Vehicle Applications
,”
IEEE Trans. Transp. Electrif.
,
7
(
3
), pp.
1349
1358
.
13.
Hu
,
J.
,
Deng
,
C.
,
Yang
,
D.
,
Yang
,
Y.
, and
Jia
,
M.
,
2022
, “
Optimal Energy Consumption and Torque Fluctuation Control of Integrated Electric Drive System Based on Mechanical-Electromagnetic-Thermal Coupling Characteristics
,”
Energy
,
247
, p.
123504
.
14.
Doǧan
,
S. N.
,
Ryborz
,
J.
, and
Bertsche
,
B.
,
2006
, “
Design of Low-Noise Manual Automotive Transmissions
,”
Proc. Inst. Mech. Eng. K: J. Multi-Body Dyn.
,
220
(
2
), pp.
79
95
.
15.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
,
2020
, “
Investigation of Gear Rattle Noise Including Visualization of Vibro-Impact Regimes
,”
J. Sound Vib.
,
467
, p.
115026
.
16.
Padmanabhan
,
C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
1995
, “
Modeling of Automotive Gear Rattle Phenomenon: State of the Art
,”
SAE Technical Paper 951316
,
Detroit, MI
,
May 15–18
.
17.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2005
, “
A Gear Rattle Model Accounting for Oil Squeeze Between the Meshing Gear Teeth
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
219
(
9
), pp.
1075
1083
.
18.
Theodossiades
,
S.
,
De La Cruz
,
M.
, and
Rahnejat
,
H.
,
2015
, “
Prediction of Airborne Radiated Noise From Lightly Loaded Lubricated Meshing Gear Teeth
,”
Appl. Acoust.
,
100
, pp.
79
86
.
19.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Vibro-Impact Motions of a Three-degree-of-freedom Gear Train Subjected to Torque Fluctuations: Model and Experiments
,”
ASME J. Comput. Nonlinear Dyn.
, in review.
20.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Influence of Various Manufacturing Errors on Gear Rattle
,”
Mech. Mach. Theory
,
173
, p.
104868
.
21.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
A Generalized Torsional Dynamics Formulation for Multi-Mesh Gear Trains With Clearances and Torque Fluctuations
,”
18th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
,
St.Louis, MO
,
Aug.14–17
.
22.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1996
, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System With Clearance
,”
J. Sound Vib.
,
194
(
3
), pp.
317
336
.
23.
Tamminana
,
V. K.
,
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2006
, “
A Study of the Relationship Between the Dynamic Factors and the Dynamic Transmission Error of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
75
84
.
24.
Celikay
,
A.
,
Donmez
,
A.
, and
Kahraman
,
A.
,
2021
, “
An Experimental and Theoretical Study of Subharmonic Resonances of a Spur Gear Pair
,”
J. Sound Vib.
,
515
, p.
116421
.
25.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2007
, “
An Analysis of the Automotive Driveline Dynamic Behaviour Focusing on the Influence of the Oil Squeeze Effect on the Idle Rattle Phenomenon
,”
J. Sound Vib.
,
303
(
3–5
), pp.
858
872
.
26.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Characterization of Nonlinear Rattling Behavior of a Gear Pair Through a Validated Torsional Model
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
4
), p.
041006
.
You do not currently have access to this content.