Abstract

Phononic crystals are periodically engineered structures with special acoustic properties that natural materials cannot have. One typical feature of phononic crystals is the emergence of band gaps wherein the wave propagation is prohibited due to the spatial periodicity of constituents. This article presents a generalized plane wave expansion method (GPWEM) and a voxel-based discretization technique to calculate the band structures of given three-dimensional phononic crystals. Integrated with the adaptive genetic algorithm (AGA), the proposed method is used to perform topological optimization of constituent distribution to achieve maximized band gap width. Numerical results yielded from the optimization of a three-dimensional cubic phononic crystal verify the effectiveness of the proposed method. Eigenmodes of the phononic crystal with the optimized topology are investigated for a better understanding of the mechanism of band gap broadening.

References

1.
Li
,
Z.-N.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2018
, “
Nonreciprocal Phenomenon in Nonlinear Elastic Wave Metamaterials With Continuous Properties
,”
Int. J. Solids Struct.
,
150
, pp.
125
134
.
2.
Ke
,
M.
,
Liu
,
Z.
,
Qiu
,
C.
,
Wang
,
W.
,
Shi
,
J.
,
Wen
,
W.
, and
Sheng
,
P.
,
2005
, “
Negative-Refraction Imaging With Two-Dimensional Phononic Crystals
,”
Phys. Rev. B
,
72
(
6
), p.
064306
.
3.
Khelif
,
A.
,
Choujaa
,
A.
,
Djafari-Rouhani
,
B.
,
Wilm
,
M.
,
Ballandras
,
S.
, and
Laude
,
V.
,
2003
, “
Trapping and Guiding of Acoustic Waves by Defect Modes in a Full-Band-Gap Ultrasonic Crystal
,”
Phys. Rev. B
,
68
(
21
), p.
214301
.
4.
Laude
,
V.
,
Wilm
,
M.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2005
, “
Full Band Gap for Surface Acoustic Waves in a Piezoelectric Phononic Crystal
,”
Phys. Rev. E
,
71
(
3
), p.
036607
.
5.
Herbold
,
E.
,
Kim
,
J.
,
Nesterenko
,
V.
,
Wang
,
S.
, and
Daraio
,
C.
,
2009
, “
Pulse Propagation in a Linear and Nonlinear Diatomic Periodic Chain: Effects of Acoustic Frequency Band-Gap
,”
Acta Mech.
,
205
(
1
), pp.
85
103
.
6.
Huang
,
H.
, and
Sun
,
C.
,
2010
, “
A Study of Band-Gap Phenomena of Two Locally Resonant Acoustic Metamaterials
,”
Proc. Inst. Mech. Eng. N: J. Nanoeng. Nanosyst.
,
224
(
3
), pp.
83
92
.
7.
Tan
,
K. T.
,
Huang
,
H.
, and
Sun
,
C.
,
2012
, “
Optimizing the Band Gap of Effective Mass Negativity in Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
101
(
24
), p.
241902
.
8.
Xia
,
B.
,
Chen
,
N.
,
Xie
,
L.
,
Qin
,
Y.
, and
Yu
,
D.
,
2016
, “
Temperature-Controlled Tunable Acoustic Metamaterial With Active Band Gap and Negative Bulk Modulus
,”
Appl. Acoust.
,
112
, pp.
1
9
.
9.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
.
10.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), p.
2022
.
11.
Tanaka
,
Y.
,
Tomoyasu
,
Y.
, and
Tamura
,
S.-I.
,
2000
, “
Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch
,”
Phys. Rev. B
,
62
(
11
), p.
7387
.
12.
Khelif
,
A.
, and
Adibi
,
A.
,
2015
,
Phononic Crystals
,
Springer
,
Berlin, Germany
.
13.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
14.
Sheng
,
P.
,
Zhang
,
X.
,
Liu
,
Z.
, and
Chan
,
C. T.
,
2003
, “
Locally Resonant Sonic Materials
,”
Phys. B: Conden. Matter
,
338
(
1–4
), pp.
201
205
.
15.
Croënne
,
C.
,
Lee
,
E.
,
Hu
,
H.
, and
Page
,
J.
,
2011
, “
Band Gaps in Phononic Crystals: Generation Mechanisms and Interaction Effects
,”
AIP Adv.
,
1
(
4
), p.
041401
.
16.
Yin
,
J.
,
Huang
,
J.
,
Zhang
,
S.
,
Zhang
,
H.
, and
Chen
,
B.
,
2014
, “
Ultrawide Low Frequency Band Gap of Phononic Crystal in Nacreous Composite Material
,”
Phys. Lett. A
,
378
(
32–33
), pp.
2436
2442
.
17.
Jiang
,
S.
,
Chen
,
H.
,
Dai
,
L.
,
Hu
,
H.
, and
Laude
,
V.
,
2017
, “
Multiple Low-Frequency Broad Band Gaps Generated by a Phononic Crystal of Periodic Circular Cavity Sandwich Plates
,”
Compos. Struct.
,
176
, pp.
294
303
.
18.
Wu
,
X.
,
Sun
,
L.
,
Zuo
,
S.
,
Liu
,
P.
, and
Huang
,
H.
,
2019
, “
Vibration Reduction of Car Body Based on 2D Dual-Base Locally Resonant Phononic Crystal
,”
Appl. Acoust.
,
151
, pp.
1
9
.
19.
Zhao
,
H.
,
Liu
,
Y.
,
Yu
,
D.
,
Wang
,
G.
,
Wen
,
J.
, and
Wen
,
X.
,
2007
, “
Absorptive Properties of Three-Dimensional Phononic Crystal
,”
J. Sound Vib.
,
303
(
1–2
), pp.
185
194
.
20.
Liang
,
Y.-J.
,
Chen
,
L.-W.
,
Wang
,
C.-C.
, and
Chang
,
I.-L.
,
2014
, “
An Acoustic Absorber Implemented by Graded Index Phononic Crystals
,”
J. Appl. Phys.
,
115
(
24
), p.
244513
.
21.
Yan
,
M.
,
Lu
,
J.
,
Li
,
F.
,
Deng
,
W.
,
Huang
,
X.
,
Ma
,
J.
, and
Liu
,
Z.
,
2018
, “
On-Chip Valley Topological Materials for Elastic Wave Manipulation
,”
Nat. Mater.
,
17
(
11
), pp.
993
998
.
22.
Li
,
Z.
,
Yang
,
S.
,
Wang
,
D.
,
Shan
,
H.
,
Chen
,
D.
,
Fei
,
C.
,
Xiao
,
M.
, and
Yang
,
Y.
,
2021
, “
Focus of Ultrasonic Underwater Sound With 3D Printed Phononic Crystal
,”
Appl. Phys. Lett.
,
119
(
7
), p.
073501
.
23.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martinez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1994
, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
,
49
(
4
), p.
2313
.
24.
Sainidou
,
R.
,
Stefanou
,
N.
,
Psarobas
,
I.
, and
Modinos
,
A.
,
2005
, “
A Layer-Multiple-Scattering Method for Phononic Crystals and Heterostructures of Such
,”
Comput. Phys. Commun.
,
166
(
3
), pp.
197
240
.
25.
Liu
,
Z.
,
Chan
,
C. T.
,
Sheng
,
P.
,
Goertzen
,
A. L.
, and
Page
,
J. H.
,
2000
, “
Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment
,”
Phys. Rev. B
,
62
(
4
), p.
2446
.
26.
Yudistira
,
D.
,
Pennec
,
Y.
,
Djafari Rouhani
,
B.
,
Dupont
,
S.
, and
Laude
,
V.
,
2012
, “
Non-Radiative Complete Surface Acoustic Wave Bandgap for Finite-Depth Holey Phononic Crystal in Lithium Niobate
,”
Appl. Phys. Lett.
,
100
(
6
), p.
061912
.
27.
Moradi
,
M.
, and
Bagheri Nouri
,
M.
,
2017
, “
An Efficient Finite Difference Time Domain Algorithm for Band Structure Calculations of Phononic Crystal
,”
J. Comput. Appl. Res. Mech. Eng. (JCARME)
,
6
(
2
), pp.
93
101
.
28.
Yi
,
G.
, and
Youn
,
B. D.
,
2016
, “
A Comprehensive Survey on Topology Optimization of Phononic Crystals
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1315
1344
.
29.
Sigmund
,
O.
, and
Jensen
,
J.
,
2003
, “
Systematic Design of Phononic Band-Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. R. Soc. London., Ser. A: Math. Phys. Eng. Sci.
,
361
(
1806
), pp.
1001
1019
.
30.
Gazonas
,
G. A.
,
Weile
,
D. S.
,
Wildman
,
R.
, and
Mohan
,
A.
,
2006
, “
Genetic Algorithm Optimization of Phononic Bandgap Structures
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5851
5866
.
31.
Liu
,
Z.-F.
,
Wu
,
B.
, and
He
,
C.-F.
,
2014
, “
Band-Gap Optimization of Two-Dimensional Phononic Crystals Based on Genetic Algorithm and FPWE
,”
Waves Random Complex Media
,
24
(
3
), pp.
286
305
.
32.
Dong
,
H.-W.
,
Su
,
X.-X.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2014
, “
Topology Optimization of Two-Dimensional Asymmetrical Phononic Crystals
,”
Phys. Lett. A
,
378
(
4
), pp.
434
441
.
33.
Li
,
Y. F.
,
Huang
,
X.
, and
Zhou
,
S.
,
2016
, “
Topological Design of Cellular Phononic Band Gap Crystals
,”
Materials
,
9
(
3
), p.
186
.
34.
Xie
,
L.
,
Xia
,
B.
,
Liu
,
J.
,
Huang
,
G.
, and
Lei
,
J.
,
2017
, “
An Improved Fast Plane Wave Expansion Method for Topology Optimization of Phononic Crystals
,”
Int. J. Mech. Sci.
,
120
, pp.
171
181
.
35.
Dal Poggetto
,
V. F.
, and
Serpa
,
A. L.
,
2020
, “
Elastic Wave Band Gaps in a Three-Dimensional Periodic Metamaterial Using the Plane Wave Expansion Method
,”
Int. J. Mech. Sci.
,
184
, p.
105841
.
36.
Jafar-Zanjani
,
S.
,
Inampudi
,
S.
, and
Mosallaei
,
H.
,
2018
, “
Adaptive Genetic Algorithm for Optical Metasurfaces Design
,”
Sci. Rep.
,
8
(
1
), pp.
1
16
.
37.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
, Vol.
2
,
Dover publications
.
38.
Cao
,
Y.
,
Hou
,
Z.
, and
Liu
,
Y.
,
2004
, “
Convergence Problem of Plane-Wave Expansion Method for Phononic Crystals
,”
Phys. Lett. A
,
327
(
2–3
), pp.
247
253
.
39.
Li
,
L.
,
1996
, “
Use of Fourier Series in the Analysis of Discontinuous Periodic Structures
,”
JOSA A
,
13
(
9
), pp.
1870
1876
.
40.
Katoch
,
S.
,
Chauhan
,
S. S.
, and
Kumar
,
V.
,
2021
, “
A Review on Genetic Algorithm: Past, Present, and Future
,”
Multimedia Tools Appl.
,
80
(
5
), pp.
8091
8126
.
You do not currently have access to this content.