Abstract

This paper depicts the application of symbolically computed Lyapunov–Perron (L–P) transformation to solve linear and nonlinear quasi-periodic systems. The L–P transformation converts a linear quasi-periodic system into a time-invariant one. State augmentation and the method of normal forms are used to compute the L–P transformation analytically. The state augmentation approach converts a linear quasi-periodic system into a nonlinear time-invariant system as the quasi-periodic parametric excitation terms are replaced by “fictitious” states. This nonlinear system can be reduced to a linear system via normal forms in the absence of resonances. In this process, one obtains near identity transformation that contains fictitious states. Once the quasi-periodic terms replace the fictitious states they represent, the near identity transformation is converted to the L–P transformation. The L–P transformation can be used to solve linear quasi-periodic systems with external excitation and nonlinear quasi-periodic systems. Two examples are included in this work, a commutative quasi-periodic system and a non-commutative Mathieu–Hill type quasi-periodic system. The results obtained via the L–P transformation approach match very well with the numerical integration and analytical results.

References

1.
Rega
,
G.
,
2019
, “
Nonlinear Dynamics in Mechanics and Engineering: 40 Years of Developments and Ali H. Nayfeh’s Legacy
,”
Nonlinear Dyn.
,
99
, pp.
11
34
. 10.1007/s11071-019-04833-w
2.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquét Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
. 10.1115/1.4037797
3.
Broer
,
H. W.
,
Huitema
,
G. B.
, and
Sevryuk
,
M. B.
,
2009
,
Quasi-Periodic Motions in Families of Dynamical Systems: Order Amidst Chaos
,
Springer-Verlag
,
Berlin
.
4.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley-VCH
,
Weinheim
.
5.
Sanders
,
J. A.
,
Verhulst
,
F.
, and
Murdock
,
J. A.
,
2007
,
Averaging Methods in Nonlinear Dynamical Systems
, Vol.
59
,
Springer-Verlag
,
New York
.
6.
Sinha
,
S. C.
,
Pandiyan
,
R.
, and
Bibb
,
J. S.
,
1996
, “
Liapunov–Floquet Transformation: Computation and Applications to Periodic Systems
,”
ASME J. Vib. Acoust.
,
118
(
2
), pp.
209
219
. 10.1115/1.2889651
7.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2019
, “
On Computation of Approximate Lyapunov–Perron Transformations
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
59261
,
American Society of Mechanical Engineers
, p.
V006T09A058
.
8.
Sharma
,
A.
, and
Sinha
,
S.
,
2020
, “
Control of Nonlinear Systems Exhibiting Chaos to Desired Periodic or Quasi-Periodic Motions
,”
Nonlinear Dyn.
,
99
(
1
), pp.
559
574
. 10.1007/s11071-019-04843-8
9.
Murdock
,
J.
,
1978
, “
On the Floquet Problem for Quasiperiodic Systems
,”
Proc. Am. Math. Soc.
,
68
(
2
), pp.
179
184
. 10.1090/S0002-9939-1978-0481275-8
10.
Redkar
,
S.
,
2012
, “
Lyapunov Stability of Quasiperiodic Systems
,”
Math. Probl. Eng.
,
2012
, p.
721382
. 10.1155/2012/721382
11.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
1998
, “
Transition Curves for the Quasi-Periodic Mathieu Equation
,”
SIAM J. Appl. Math.
,
58
(
4
), pp.
1094
1115
. 10.1137/S0036139996303877
12.
Waters
,
T. J.
,
2010
, “
Stability of a 2-Dimensional Mathieu-Type System With Quasiperiodic Coefficients
,”
Nonlinear Dyn.
,
60
(
3
), pp.
341
356
. 10.1007/s11071-009-9599-4
13.
Wooden
,
S. M.
, and
Sinha
,
S.
,
2007
, “
Analysis of Periodic-Quasiperiodic Nonlinear Systems Via Lyapunov–Floquet Transformation and Normal Forms
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
263
273
. 10.1007/s11071-006-9072-6
14.
Davis
,
S. H.
, and
Rosenblat
,
S.
,
1980
, “
A Quasiperiodic Mathieu–Hill Equation
,”
SIAM J. Appl. Math.
,
38
(
1
), pp.
139
155
. 10.1137/0138012
15.
Belhaq
,
M.
,
Guennoun
,
K.
, and
Houssni
,
M.
,
2002
, “
Asymptotic Solutions for a Damped Non-Linear Quasi-Periodic Mathieu Equation
,”
Int. J. near Mech.
,
37
(
3
), pp.
445
460
. 10.1016/S0020-7462(01)00020-8
16.
Guennoun
,
K.
,
Houssni
,
M.
, and
Belhaq
,
M.
,
2002
, “
Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
3
), pp.
211
236
. 10.1023/A:1014496917703
17.
Belhaq
,
M.
, and
Houssni
,
M.
,
1999
, “
Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations
,”
Nonlinear Dyn.
,
18
(
1
), pp.
1
24
. 10.1023/A:1008315706651
18.
Johnson
,
R.
, and
Moser
,
J.
,
1982
, “
The Rotation Number for Almost Periodic Potentials
,”
Commun. Math. Phys.
,
84
(
3
), pp.
403
438
. 10.1007/BF01208484
19.
Waswa
,
P. M.
, and
Redkar
,
S.
,
2020
, “
A Direct Approach for Simplifying Nonlinear Systems With External Periodic Excitation Using Normal Forms
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1065
1088
. 10.1007/s11071-019-05334-6
20.
Subramanian
,
S. C.
,
Waswa
,
P. M.
, and
Redkar
,
S.
,
2021
, “
Computation of Lyapunov–Perron Transformation for Linear Quasi-Periodic Systems
,”
J. Vib. Control
. 10.1177/1077546321993568
21.
Cherangara Subramanian
,
S.
, and
Redkar
,
S.
,
2021
, “
Comparison of Poincaré Normal Forms and Floquet Theory for Analysis of Linear Time Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
014502
. 10.1115/1.4048715
22.
Acar
,
G. D.
, and
Feeny
,
B. F.
,
2019
, “
Approximate Floquet Analysis of Parametrically Excited Multi-Degree-of-Freedom Systems With Application to Wind Turbines
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011004
.
23.
Bibo
,
A.
,
Abdelkefi
,
A.
, and
Daqaq
,
M. F.
,
2015
, “
Modeling and Characterization of a Piezoelectric Energy Harvester Under Combined Aerodynamic and Base Excitations
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031017
. 10.1115/1.4029611
24.
De La Fuente
,
J.
,
Subramanian
,
S. C.
,
Sugar
,
T. G.
, and
Redkar
,
S.
,
2020
, “
A Robust Phase Oscillator Design for Wearable Robotic Systems
,”
Rob. Auton. Syst.
,
128
, p.
103514
. 10.1016/j.robot.2020.103514
25.
Subramanian
,
S. C.
,
Dye
,
M.
, and
Redkar
,
S.
,
2020
, “
Dynamic Analysis of Suction Stabilized Floating Platforms
,”
J. Mar. Sci. Eng.
,
8
(
8
), p.
587
. 10.3390/jmse8080587
26.
Kahn
,
P.
, and
Zarmi
,
Y.
,
2014
,
Nonlinear Dynamics: Exploration Through Normal Forms
,
Dover Books on Physics
,
Dover Publications
,
New York
.
27.
Siegel
,
C. L.
,
1961
, “
Uber die Normalform analytischer Differentialgleichungen in der Nahe einer Gleichgewichtslosung
,”
Matematika
,
5
(
2
), pp.
119
128
.
28.
Zhang
,
Y.
,
Chen
,
K.
, and
Tan
,
H.-Z.
,
2009
, “
Performance Analysis of Gradient Neural Network Exploited for Online Time-Varying Matrix Inversion
,”
IEEE Trans. Autom. Contr.
,
54
(
8
), pp.
1940
1945
. 10.1109/TAC.2009.2023779
29.
Zhang
,
Y.
,
Yi
,
C.
, and
Ma
,
W.
,
2009
, “
Simulation and Verification of Zhang Neural Network for Online Time-Varying Matrix Inversion
,”
Simul. Modell. Pract. Theory
,
17
(
10
), pp.
1603
1617
. 10.1016/j.simpat.2009.07.001
30.
Xiao
,
L.
,
Liao
,
B.
,
Li
,
S.
, and
Chen
,
K.
,
2018
, “
Nonlinear Recurrent Neural Networks for Finite-Time Solution of General Time-Varying Linear Matrix Equations
,”
Neural Netw.
,
98
, pp.
102
113
. 10.1016/j.neunet.2017.11.011
31.
Guo
,
D.
, and
Zhang
,
Y.
,
2013
, “
Zhang Neural Network for Online Solution of Time-Varying Linear Matrix Inequality Aided With an Equality Conversion
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
25
(
2
), pp.
370
382
. 10.1109/TNNLS.2013.2275011
32.
Guo
,
D.
,
Nie
,
Z.
, and
Yan
,
L.
,
2017
, “
Novel Discrete-Time Zhang Neural Network for Time-Varying Matrix Inversion
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
47
(
8
), pp.
2301
2310
. 10.1109/TSMC.2017.2656941
33.
Sinha
,
S.
,
Redkar
,
S.
,
Deshmukh
,
V.
, and
Butcher
,
E. A.
,
2005
, “
Order Reduction of Parametrically Excited Nonlinear Systems: Techniques and Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
237
273
. 10.1007/s11071-005-2822-z
34.
Arnold
,
V. I.
,
2012
,
Geometrical Methods in the Theory of Ordinary Differential Equations
, Vol.
250
,
Springer-Verlag
,
New York
.
35.
Jorba
,
À.
, and
Simó
,
C.
,
1992
, “
On the Reducibility of Linear Differential Equations With Quasiperiodic Coefficients
,”
J. Differ. Equ.
,
98
(
1
), pp.
111
124
. 10.1016/0022-0396(92)90107-X
36.
Bogoljubov
,
N.
,
Mitropoliskij
,
J. A.
, and
Samoilenko
,
A.
,
1976
,
Methods of Accelerated Convergence in Nonlinear Mechanics
,
Springer-Verlag
,
Berlin
.
37.
Arnol’d
,
V. I.
,
1963
, “
Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics
,”
Russ. Math. Surv.
,
18
(
6
), p.
85
. 10.1070/RM1963v018n06ABEH001143
38.
Waswa
,
P. M.
, and
Redkar
,
S.
,
2020
, “Analysis and Control of Nonlinear Attitude Motion of Gravity-Gradient Stabilized Spacecraft Via Lyapunov–Floquet Transformation and Normal Forms,”
Advances in Spacecraft Attitude Control
,
IntechOpen
.
You do not currently have access to this content.