Abstract

A proper orthogonal decomposition (POD)-based polynomial chaos expansion (PCE) is utilized in this article for the uncertainty quantification (UQ) of an impact dynamic oscillator. The time-dependent nonsmooth behavior and the uncertainties are decoupled using the POD approach. The uncertain response domain is reduced using the POD approach, and the dominant POD modes are utilized for the UQ of the response quantity. Furthermore, the PCE model is utilized for the propagation of the input uncertainties. Two different cases of impact oscillator are considered, namely, single impact and multiple impact. The contact between two bodies is modeled by Hertz’s law. For both the cases, UQ is performed on the projectile displacement, projectile velocity, and contact force. A highly nonsmooth behavior is noticed for the contact force. For that reason, most number of POD modes are required to assess the UQ of contact force. All the results are compared with the Monte Carlo simulation (MCS) and time domain PCE results. Very good accuracies are observed for the PCE and the POD-PCE predicted results using much less number of model evaluations compared to MCS. As the PCE coefficients are dependent on time, the PCE model is computed at each time step. On the contrary, for the POD-PCE model, the PCE coefficients are computed for the number of POD modes only: it is much less than the PCE model.

References

1.
Pashah
,
S.
,
Massenzio
,
M.
, and
Jacquelin
,
E.
,
2008
, “
Prediction of Structural Response for Low Velocity Impact
,”
Int. J. Impact Eng.
,
35
(
2
), pp.
119
132
. 10.1016/j.ijimpeng.2006.12.006
2.
Apetre
,
N.
,
Sankar
,
B.
, and
Ambur
,
D.
,
2006
, “
Low-Velocity Impact Response of Sandwich Beams With Functionally Graded Core
,”
Int. J. Solids Struct.
,
43
(
9
), pp.
2479
2496
. 10.1016/j.ijsolstr.2005.06.003
3.
Abrate
,
S.
,
2001
, “
Modeling of Impacts on Composite Structures
,”
Compos. Struct.
,
51
(
2
), pp.
129
138
. 10.1016/S0263-8223(00)00138-0
4.
Wu
,
C.
, and
Sun
,
C.
,
1996
, “
Low Velocity Impact Damage in Composite Sandwich Beams
,”
Compos. Struct.
,
34
(
1
), pp.
21
27
. 10.1016/0263-8223(95)00127-1
5.
Pashah
,
S.
,
Massenzio
,
M.
, and
Jacquelin
,
E.
,
2008
, “
Structural Response of Impacted Structure Described Through Anti-Oscillators
,”
Int. J. Impact Eng.
,
35
(
6
), pp.
471
486
. 10.1016/j.ijimpeng.2007.06.004
6.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
7.
Lucor
,
D.
, and
Karniadakis
,
G. E.
,
2004
, “
Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
720
735
. 10.1137/S1064827503427984
8.
Maitre
,
O. P. L.
,
Mathelin
,
L.
,
Knio
,
O.
, and
Hussaini
,
M.
,
2010
, “
Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics
,”
Discrete Continuum Dyn. Syst. Ser. A
,
28
(
1
), pp.
199
226
. 10.3934/dcds.2010.28.199
9.
Gerritsma
,
M.
,
van der Steen
,
J.-B.
,
Vos
,
P.
, and
Karniadakis
,
G.
,
2010
, “
Time-Dependent Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
229
(
22
), pp.
8333
8363
. 10.1016/j.jcp.2010.07.020
10.
Spiridonakos
,
M.
, and
Chatzi
,
E.
,
2015
, “
Metamodeling of Dynamic Nonlinear Structural Systems Through Polynomial Chaos NARX Models
,”
Comput. Struct.
,
157
, pp.
99
113
. 10.1016/j.compstruc.2015.05.002
11.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
. 10.1016/j.jcp.2005.03.023
12.
Sarrouy
,
E.
,
Dessombz
,
O.
, and
Sinou
,
J. J.
,
2012
, “
Stochastic Analysis of the Eigenvalue Problem for Mechanical Systems Using Polynomial Chaos Expansion—Application to a Finite Element Rotor
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051009
. 10.1115/1.4005842
13.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2012
, “
Prediction of Random Self Friction-Induced Vibrations in Uncertain Dry Friction Systems Using a Multi-Element Generalized Polynomial Chaos Approach
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041015
. 10.1115/1.4006413
14.
Bhusal
,
R.
, and
Subbarao
,
K.
,
2019
, “
Uncertainty Quantification Using Generalized Polynomial Chaos Expansion for Nonlinear Dynamical Systems With Mixed State and Parameter Uncertainties
,”
ASME J. Comput. Nonlinear. Dyn.
,
14
(
2
), p.
021011
. 10.1115/1.4041473
15.
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Rowley
,
C. W.
,
2014
, “
Long-Time Uncertainty Propagation Using Generalized Polynomial Chaos and Flow Map Composition
,”
J. Comput. Phys.
,
274
, pp.
783
802
. 10.1016/j.jcp.2014.06.029
16.
Mai
,
C. V.
, and
Sudret
,
B.
,
2017
, “
Surrogate Models for Oscillatory Systems Using Sparse Polynomial Chaos Expansions and Stochastic Time Warping
,”
SIAM/ASA J. Uncertainty Quantif.
,
5
(
1
), pp.
540
571
. 10.1137/16M1083621
17.
Bhattacharyya
,
B.
,
Jacquelin
,
E.
, and
Brizard
,
D.
,
2020
, “
A Kriging-NARX Model for Uncertainty Quantification of Nonlinear Stochastic Dynamical Systems in Time Domain
,”
J. Eng. Mech.
,
146
(
7
), pp.
1
21
. 10.1061/(ASCE)EM.1943-7889.0001792
18.
Chinesta
,
F.
,
Ladeveze
,
P.
, and
Cueto
,
E.
,
2011
, “
A Short Review on Model Order Reduction Based on Proper Generalized Decomposition
,”
Arch. Comput. Methods Eng.
,
18
(
4
), pp.
395
404
. 10.1007/s11831-011-9064-7
19.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
20.
Kunisch
,
K.
, and
Volkwein
,
S.
,
2002
, “
Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics
,”
SIAM J. Numer. Anal.
,
40
(
2
), pp.
492
515
. 10.1137/S0036142900382612
21.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
. 10.1017/S0022112010001217
22.
Blatman
,
G.
, and
Sudret
,
B.
,
2013
, “
Sparse Polynomial Chaos Expansions of Vector-Valued Response Quantities
,”
ICOSSAR
,
New York
,
June 16–20
, pp.
3245
3252
.
23.
Moore
,
B.
,
1979
, “
Principal Component Analysis in Nonlinear Systems: Preliminary Results
,” 18th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes, Fort Lauderdale, FL, Dec. 12–14,
IEEE
, pp.
1057
1060
.
24.
Kunisch
,
K.
, and
Volkwein
,
S.
,
1999
, “
Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition
,”
J. Optim. Theory Appl.
,
102
(
2
), pp.
345
371
. 10.1023/A:1021732508059
25.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
. 10.1198/016214507000000888
26.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equation
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
. 10.1137/S1064827501387826
27.
Jacquelin
,
E.
,
Baldanzini
,
N.
,
Bhattacharyya
,
B.
,
Brizard
,
D.
, and
Pierini
,
M.
,
2019
, “
Random Dynamical System in Time Domain: A POD-PC Model
,”
Mech. Syst. Sig. Process.
,
133
, p.
106251
. 10.1016/j.ymssp.2019.106251
28.
Bhattacharyya
,
B.
,
2018
, “
A Critical Appraisal of Design of Experiments for Uncertainty Quantification
,”
Arch. Comput. Methods Eng.
,
25
(
3
), pp.
727
751
. 10.1007/s11831-017-9211-x
29.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
. 10.1090/qam/910462
30.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
. 10.1146/annurev.fl.25.010193.002543
31.
Azeez
,
M.
, and
Vakakis
,
A.
,
2001
, “
Proper Orthogonal Decomposition (POD) of a Class of Vibro-Impact Oscillations
,”
J. Sound Vib.
,
240
(
5
), pp.
859
889
. 10.1006/jsvi.2000.3264
32.
Mai
,
C. V.
,
Spiridonakos
,
M. D.
,
Chatzi
,
E. N.
, and
Sudret
,
B.
,
2016
, “
Surrogate Modeling for Stochastic Dynamical Systems by Combining Nonlinear Autoregressive With Exogenous Input Models and Polynomial Chaos Expansions
,”
Int. J. Uncertainty Quantif.
,
6
(
4
), pp.
313
339
. 10.1615/Int.J.UncertaintyQuantification.2016016603
33.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
34.
Buezas
,
F. S.
,
Rosales
,
M. B.
, and
Sampaio
,
R.
,
2013
, “
Propagation of Uncertainties and Multimodality in the Impact Problem of Two Elastic Bodies
,”
Int. J. Mech. Sci.
,
75
, pp.
145
155
. 10.1016/j.ijmecsci.2013.05.009
35.
Freund
,
R. W.
,
2000
, “
Krylov-Subspace Methods for Reduced-Order Modeling in Circuit Simulation
,”
J. Comput. Appl. Math.
,
123
(
12
), pp.
395
421
. 10.1016/S0377-0427(00)00396-4
36.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
. 10.1016/j.jcp.2010.12.021
You do not currently have access to this content.