The restriction of deformations to a subregion of a system undergoing either free or forced vibration due to an irregularity or discontinuity in it is called mode localization. Here, we study mode localization in free and forced vibration of monolithic and unidirectional fiber-reinforced rectangular linearly elastic plates with edges either simply supported (SS) or clamped by using a third-order shear and normal deformable plate theory (TSNDT) with points on either one or two normals to the plate midsurface constrained from translating in all three directions. The plates studied are symmetric about their midsurfaces. The in-house developed software based on the finite element method (FEM) is first verified by comparing predictions from it with either the literature results or those computed by using the linear theory of elasticity and the commercial FE software abaqus. New results include: (i) the localization of both in-plane and out-of-plane modes of vibration, (ii) increase in the mode localization intensity with an increase in the length/width ratio of a rectangular plate, (iii) change in the mode localization characteristics with the fiber orientation angle in unidirectional fiber reinforced laminae, (iv) mode localization due to points on two normals constrained, and (iv) the exchange of energy during forced harmonic vibrations between two regions separated by the line of nearly stationary points that results in a beats-like phenomenon in a subregion of the plate. Constraining translational motion of internal points can be used to design a structure with vibrations limited to its small subregion and harvesting energy of vibrations of the subregion.

References

1.
Anderson
,
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev.
,
109
(
5
), p.
1492
.
2.
Hodges
,
C.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.
3.
Valero
,
N.
, and
Bendiksen
,
O.
,
1986
, “
Vibration Characteristics of Mistuned Shrouded Blade Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
293
299
.
4.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part I: Free Vibrations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
429
438
.
5.
Bendiksen
,
O. O.
,
1987
, “
Mode Localization Phenomena in Large Space Structures
,”
AIAA J.
,
25
(
9
), pp.
1241
1248
.
6.
Pierre
,
C.
,
Tang
,
D. M.
, and
Dowell
,
E. H.
,
1987
, “
Localized Vibrations of Disordered Multispan Beams-Theory and Experiment
,”
AIAA J.
,
25
(
9
), pp.
1249
1257
.
7.
Hodges
,
C.
, and
Woodhouse
,
J.
,
1983
, “
Vibration Isolation From Irregularity in a Nearly Periodic Structure: Theory and Measurements
,”
J. Acoust. Soc. Am.
,
74
(
3
), pp.
894
905
.
8.
Pierre
,
C.
,
1990
, “
Weak and Strong Vibration Localization in Disordered Structures: A Statistical Investigation
,”
J. Sound Vib.
,
139
(
1
), pp.
111
132
.
9.
Herbert
,
D.
, and
Jones
,
R.
,
1971
, “
Localized States in Disordered Systems
,”
J. Phys. C
,
4
(
10
), p.
1145
.
10.
Kirkman
,
P.
, and
Pendry
,
J.
,
1984
, “
The Statistics of One-Dimensional Resistances
,”
J. Phys. C
,
17
(
24
), p.
4327
.
11.
Pierre
,
C.
, and
Plaut
,
R. H.
,
1989
, “
Curve Veering and Mode Localization in a Buckling Problem
,”
Z. Angew. Math. Phys.
,
40
(
5
), pp.
758
761
.
12.
Nayfeh
,
A. H.
, and
Hawwa
,
M. A.
,
1994
, “
Use of Mode Localization in Passive Control of Structural Buckling
,”
AIAA J.
,
32
(
10
), pp.
2131
2133
.
13.
Paik
,
S.
,
Gupta
,
S.
, and
Batra
,
R.
,
2015
, “
Localization of Buckling Modes in Plates and Laminates
,”
Compos. Struct.
,
120
, pp.
79
89
.
14.
Ibrahim
,
R.
,
1987
, “
Structural Dynamics With Parameter Uncertainties
,”
ASME Appl. Mech. Rev.
,
40
(
3
), pp.
309
328
.
15.
Hodges
,
C.
, and
Woodhouse
,
J.
,
1986
, “
Theories of Noise and Vibration Transmission in Complex Structures
,”
Rep. Prog. Phys.
,
49
(
2
), p.
107
.
16.
Nowacki
,
W.
,
1953
, “
Vibration and Buckling of Rectangular Plates Simply-Supported at the Periphery and at Several Points Inside
,”
Arch. Mech. Stosow.
,
5
(
3
), pp.
437
454
.
17.
Gorman
,
D.
,
1981
, “
An Analytical Solution for the Free Vibration Analysis of Rectangular Plates Resting on Symmetrically Distributed Point Supports
,”
J. Sound Vib.
,
79
(
4
), pp.
561
574
.
18.
Gorman
,
D.
, and
Singal
,
R.
,
1991
, “
Analytical and Experimental Study of Vibrating Rectangular Plates on Rigid Point Supports
,”
AIAA J.
,
29
(
5
), pp.
838
844
.
19.
Bapat
,
A.
,
Venkatramani
,
N.
, and
Suryanarayan
,
S.
,
1988
, “
A New Approach for the Representation of a Point Support in the Analysis of Plates
,”
J. Sound Vib.
,
120
(
1
), pp.
107
125
.
20.
Bapat
,
A.
,
Venkatramani
,
N.
, and
Suryanarayan
,
S.
,
1988
, “
The Use of Flexibility Functions With Negative Domains in the Vibration Analysis of Asymmetrically Point-Supported Rectangular Plates
,”
J. Sound Vib.
,
124
(
3
), pp.
555
576
.
21.
Bapat
,
A.
, and
Suryanarayan
,
S.
,
1989
, “
The Flexibility Function Approach to Vibration Analysis of Rectangular Plates With Arbitrary Multiple Point Supports on the Edges
,”
J. Sound Vib.
,
128
(
2
), pp.
209
233
.
22.
Bapat
,
A.
, and
Suryanarayan
,
S.
,
1989
, “
Free Vibrations of Periodically Point-Supported Rectangular Plates
,”
J. Sound Vib.
,
132
(
3
), pp.
491
509
.
23.
Bapat
,
A.
, and
Suryanarayan
,
S.
,
1992
, “
The Fictitious Foundation Approach to Vibration Analysis of Plates With Interior Point Supports
,”
J. Sound Vib.
,
155
(
2
), pp.
325
341
.
24.
Lee
,
S.
, and
Lee
,
L.
,
1994
, “
Free Vibration Analysis of Rectangular Plates With Interior Point Supports
,”
J. Struct. Mech.
,
22
(
4
), pp.
505
538
.
25.
Rao
,
G. V.
,
Raju
,
I.
, and
Amba-Rao
,
C.
,
1973
, “
Vibrations of Point Supported Plates
,”
J. Sound Vib.
,
29
(
3
), pp.
387
391
.
26.
Raju
,
I.
, and
Amba-Rao
,
C.
,
1983
, “
Free Vibrations of a Square Plate Symmetrically Supported at Four Points on the Diagonals
,”
J. Sound Vib.
,
90
(
2
), pp.
291
297
.
27.
Utjes
,
J.
,
Sarmiento
,
G. S.
,
Laura
,
P.
, and
Gelos
,
R.
,
1986
, “
Vibrations of Thin Elastic Plates With Point Supports: A Comparative Study
,”
Appl. Acoust.
,
19
(
1
), pp.
17
24
.
28.
Kim
,
C.
, and
Dickinson
,
S.
,
1987
, “
The Flexural Vibration of Rectangular Plates With Point Supports
,”
J. Sound Vib.
,
117
(
2
), pp.
249
261
.
29.
Bhat
,
R.
,
1991
, “
Vibration of Rectangular Plates on Point and Line Supports Using Characteristic Orthogonal Polynomials in the Rayleigh-Ritz Method
,”
J. Sound Vib.
,
149
(
1
), pp.
170
172
.
30.
Filoche
,
M.
, and
Mayboroda
,
S.
,
2009
, “
Strong Localization Induced by One Clamped Point in Thin Plate Vibrations
,”
Phys. Rev. Lett.
,
103
(
25
), p.
254301
.
31.
Sharma
,
D.
,
Gupta
,
S.
, and
Batra
,
R.
,
2012
, “
Mode Localization in Composite Laminates
,”
Compos. Struct.
,
94
(
8
), pp.
2620
2631
.
32.
Batra
,
R.
, and
Aimmanee
,
S.
,
2003
, “
Missing Frequencies in Previous Exact Solutions of Free Vibrations of Simply Supported Rectangular Plates
,”
J. Sound Vib.
,
265
(
4
), pp.
887
896
.
33.
Du
,
J.
,
Li
,
W. L.
,
Jin
,
G.
,
Yang
,
T.
, and
Liu
,
Z.
,
2007
, “
An Analytical Method for the in-Plane Vibration Analysis of Rectangular Plates With Elastically Restrained Edges
,”
J. Sound Vib.
,
306
(
3–5
), pp.
908
927
.
34.
Srinivas
,
S.
, and
Rao
,
A.
,
1970
, “
Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates
,”
Int. J. Solids Struct.
,
6
(
11
), pp.
1463
1481
.
35.
Vel, S. S., and Batra, R. C., 1999, “
Analytical Solution for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary Conditions
,”
AIAA J.
,
37
(11), pp. 1464–1473.
36.
Shah
,
P.
, and
Batra
,
R.
,
2017
, “
Stress Singularities and Transverse Stresses Near Edges of Doubly Curved Laminated Shells Using TSNDT and Stress Recovery Scheme
,”
Eur. J. Mech.-A
,
63
, pp.
68
83
.
37.
Lo, K. H., Christensen, R. M., and Wu, E. M., 1977, “
A High-Order Theory of Plate Deformation---Part 1: Homogeneous Plates
,”
ASME. J. Appl. Mech.
,
44
(4), pp. 663–668.
38.
Carrera
,
E.
,
1999
, “
A Study of Transverse Normal Stress Effect on Vibration of Multilayered Plates and Shells
,”
J. Sound Vib.
,
225
(
5
), pp.
803
829
.
39.
Vidoli
,
S.
, and
Batra
,
R. C.
,
2000
, “
Derivation of Plate and Rod Equations for a Piezoelectric Body From a Mixed Three-Dimensional Variational Principle
,”
J. Elasticity
,
59
(
1–3
), pp.
23
50
.
40.
Batra
,
R. C.
, and
Vidoli
,
S.
,
2002
, “
Higher-Order Piezoelectric Plate Theory Derived From a Three-Dimensional Variational Principle
,”
AIAA J.
,
40
(
1
), pp.
91
104
.
41.
Mindlin, R. D., 1951, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
J. Appl. Mech.
,
18
, pp. 31–38.
42.
Alsuwaiyan
,
A.
, and
Shaw
,
S. W.
,
2003
, “
Steady-State Responses in Systems of Nearly-Identical Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
80
87
.
43.
Alsuwaiyan
,
A. S.
,
2013
, “
Localization in Multiple Nearly-Identical Tuned Vibration Absorbers
,”
Int. J. Eng. Technol.
,
2
(
3
), p.
157
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.882.1873&rep=rep1&type=pdf
44.
Spletzer
,
M.
,
Raman
,
A.
,
Wu
,
A. Q.
,
Xu
,
X.
, and
Reifenberger
,
R.
,
2006
, “
Ultrasensitive Mass Sensing Using Mode Localization in Coupled Microcantilevers
,”
Appl. Phys. Lett.
,
88
(
25
), p.
254102
.
45.
Cosserat, E., and Cosserat, F., 1909, “
Theorie des Corps Deformables
,” Paris, A. Hermann and Sons.
46.
Srinivas
,
S.
,
Rao
,
C. J.
, and
Rao
,
A.
,
1970
, “
An Exact Analysis for Vibration of Simply-Supported Homogeneous and Laminated Thick Rectangular Plates
,”
J. Sound Vib.
,
12
(
2
), pp.
187
199
.
47.
Batra
,
R. C.
,
Vidoli
,
S.
, and
Vestroni
,
F.
,
2002
, “
Plane Wave Solutions and Modal Analysis in Higher Order Shear and Normal Deformable Plate Theories
,”
J. Sound Vib.
,
257
(
1
), pp.
63
88
.
48.
Vel
,
S. S.
, and
Batra
,
R.
,
2000
, “
The Generalized Plane Strain Deformations of Thick Anisotropic Composite Laminated Plates
,”
Int. J. Solids Struct.
,
37
(
5
), pp.
715
733
.
49.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
, Mineola, NY.
50.
Qian
,
L.
,
Batra
,
R.
, and
Chen
,
L.
,
2003
, “
Free and Forced Vibrations of Thick Rectangular Plates Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Petrov-Galerkin (MLPG) Method
,”
Comput. Model. Eng. Sci.
,
4
(
5
), pp.
519
534
.http://www.techscience.com/doi/10.3970/cmes.2003.004.519.pdf
51.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
, New York.
52.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2003
, “
On the Transfer of Energy Between Widely Spaced Modes in Structures
,”
Nonlinear Dyn.
,
31
(
2
), pp.
225
242
.
53.
Hirwani
,
C. K.
,
Panda
,
S. K.
, and
Mahapatra
,
T. R.
,
2018
, “
Nonlinear Finite Element Analysis of Transient Behavior of Delaminated Composite Plate
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021001
.
54.
Xiao
,
J.
, and
Batra
,
R.
,
2014
, “
Delamination in Sandwich Panels Due to Local Water Slamming Loads
,”
J. Fluids Struct.
,
48
, pp.
122
155
.
55.
Sapkale, S. L., Sucheendran, M. M., Gupta, S. S., and Kanade, S. V., 2018, “
Vibroacoustic Study of a Point-Constrained Plate Mounted in a Duct
,”
J. Sound Vib.
,
420
, pp. 204–226.
You do not currently have access to this content.