This paper deals with the theoretical and experimental study of an electromechanical system (EMS) actuated by a chemo-inspired oscillator, namely, the Brusselator oscillator. The modeling of such a system is presented. Theoretical results show that the displacement or flexion of the EMS undergoes spiking oscillations. This kind of oscillation is due to the transfer of the Brusselator electronic circuit signal to the mechanical arm. The theoretical results are confirmed by an experimental study with a good qualitative agreement.

References

1.
Simo
,
H.
,
2014
, “
Etude Théorique et Expérimentale de la Dynamique des Oscillateurs Pulsés et Applications Aux Systèmes Électromécaniques
,” Ph.D. thesis, University of Yaoundé 1, Yaoundé, Cameroon.
2.
Fitzhugh
,
R.
,
1961
, “
Impulses and Physiological State in Theoretical Models of Nerve Membrane
,”
J. Biophys.
,
1
(
6
), pp.
445
466
.
3.
Morris
,
C. C.
, and
Lecar
,
H.
,
1981
, “
Voltage Oscillations in the Barnacle Giant Muscle Fiber
,”
J. Biophys.
,
35
(
1
), pp.
193
213
.
4.
Hindmarsh
,
J. L.
, and
Rose
,
R. M.
,
1984
, “
A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations
,”
Biol. Sci.
,
221
(
1222
), pp.
87
102
.
5.
Guevara
,
M. R.
, and
Glass
,
L.
,
1982
, “
Phase Locking, Period Doubling Bifurcations and Chaos in a Mathematical Model of a Periodically Driven Oscillator: A Theory for the Entrainment of Biological Oscillators and the Generation of Cardiac Dysrhythmias
,”
J. Math. Biol.
,
14
(
1
), pp.
1
23
.
6.
Collins
,
J. J.
, and
Stewart
,
I.
,
1994
, “
A Group-Theoretic Approach to Rings of Coupled Biological Oscillators
,”
Biol. Cybern.
,
71
(
2
), pp.
95
103
.
7.
Zaikin
,
A. N.
, and
Zhabotinsky
,
A. M.
,
1970
, “
Concentration Wave Propagation in Two-Dimensional Liquid Phase Self-Oscillating Systems
,”
Nature
,
225
(
5232
), pp.
535
537
.
8.
Prigogine
,
I.
, and
Lefever
,
R.
,
1968
, “
Symmetry Breaking Instabilities in Dissipative Systems-II
,”
J. Chem. Phys.
,
48
(1), pp.
1
7
.
9.
Preumont
,
A.
,
2006
,
Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems
,
Springer
,
Dordrecht, The Netherlands
.
10.
Jerrelind
,
J.
, and
Stensson
,
A.
,
2000
, “
Nonlinear Dynamics of Parts in Engineering Systems
,”
Chaos Solitons Fractals
,
11
(
15
), pp.
2413
2428
.
11.
Luo
,
A. C.
, and
Wang
,
F.
,
2002
, “
Chaotic Motion in a Microelectromechanical System With Non-Linearity From Capacitors
,”
Commun. Nonlinear Sci. Numer. Simul.
,
7
(1–2), pp.
31
49
.
12.
DeMartini
,
B.
,
Butterfield
,
H.
,
Moehlis
,
J.
, and
Turner
,
K.
,
2007
, “
Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation
,”
J. Microelectromech. Syst.
,
16
(
6
), pp.
1314
1323
.
13.
Chedjou
,
J. C.
,
Woafo
,
P.
, and
Domngang
,
S.
,
2001
, “
Shilnikov Chaos and Dynamics of a Self-Sustained Electromechanical Transducer
,”
ASME J. Vib. Acoust.
,
123
(
2
), pp.
170
174
.
14.
Yamapi
,
R.
, and
Woafo
,
P.
,
2005
, “
Nonlinear Electromechanical Devices: Dynamics and Synchronization of Coupled Self-Sustained Electromechanical Devices
,”
J. Sound Vib.
,
285
(4–5), pp.
1151
1170
.
15.
Ji
,
J. C.
,
2003
, “
Stability and Hopf Bifurcation in a Magnetic Bearing System With Time Delays
,”
J. Sound Vib.
,
259
(4), pp.
845
856
.
16.
Palacios Felix
,
J. L.
, and
Balthazar
,
J. M.
,
2009
, “
Comments on a Nonlinear and Nonideal Electromechanical Damping Vibration Absorber, Sommerfeld Effect and Energy Transfer
,”
Nonlinear Dyn.
,
55
(1–2), pp.
1
11
.
17.
Ji
,
J. C.
,
Hansen
,
C. H.
, and
Zander
,
A. C.
,
2008
, “
Nonlinear Dynamics of Magnetic Bearing Systems
,”
J. Intell. Mater. Syst. Struct.
,
19
(12), pp.
1471
1491
.
18.
Ji
,
J. C.
,
2003
, “
Stability and Bifurcation in an Electromechanical System With Time Delay
,”
Mech. Res. Commun.
,
30
(
3
), pp.
217
225
.
19.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2007
, “
Dynamics of a Self-Sustained Electromechanical System With Flexible Arm and Cubic Coupling
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
8
), pp.
1504
1517
.
20.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2008
, “
Dynamics, Chaos and Synchronization of Self-Sustained Electromechanical Systems With Clamped-Free Flexible Arm
,”
Nonlinear Dyn.
,
53
(
3
), pp.
201
214
.
21.
Yamapi
,
R.
, and
Woafo
,
P.
,
2009
,
Nonlinear Electromechanical Devices: Dynamics and Measurement, Effects and Control
,
Nova Science Publishers
, New York.
22.
Palacios Felix
,
J. L.
,
Balthazar
,
J. M.
, and
Brasil
,
R. M. L.
,
2009
, “
Comments on Nonlinear Dynamics of a Non-Ideal Duffing–Rayleigh Oscillator: Numerical and Analytical Approaches
,”
J. Sound Vib.
,
319
(3–5), pp.
1136
1149
.
23.
Simo Domguia
,
U.
,
Abobda
,
L. T.
, and
Woafo
,
P.
,
2016
, “
Dynamical of a Capacitive Microelectromechanical System Powered by a Hindmarsh-Rose Electronic Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051006
.
24.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2010
, “
Experimental Realization and Simulations a Self-Sustained Macro Electromechanical System
,”
Mech. Res. Commun.
,
37
(
1
), pp.
106
110
.
25.
Kitio Kwuimy
,
C. A.
,
Nana
,
B.
, and
Woafo
,
P.
,
2010
, “
Experimental Bifurcations and Chaos in a Modified Self-Sustained Macro Electromechanical System
,”
J. Sound Vib.
,
329
(
15
), pp.
3137
3148
.
26.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2010
, “
Modeling and Dynamics of a Self-Sustained Electrostatic Microelectromechanical System
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021010
.
27.
Tlidi
,
M.
,
Gandica
,
Y.
,
Sonnino
,
G.
,
Averlant
,
E.
, and
Panajotov
,
K.
,
2016
, “
Self-Replicating Spots in the Brusselator Model and Extreme Events in the One-Dimensional Case With Delay
,”
J. Entropy
,
18
(
64
), pp.
1
10
.
28.
Kingni Sifeu
,
T.
,
Van der Sande
,
G.
,
Keuninckx
,
L.
,
Danckaert
,
J.
, and
Woafo
,
P.
,
2013
, “
Dissipative Chaos, Shilnikov Chaos and Bursting Oscillations in a Three-Dimensional Autonomous System: Theory and Electronic Implementation
,”
Nonlinear Dyn.
,
73
(1–2), pp.
1111
1123
.
29.
Mestrom
,
R. M. C.
,
Fey
,
R. H. B.
, and
Nijmeijer
,
H.
,
2008
, “
Theoretical and Experimental Nonlinear Dynamics of a Clamped-Clamped Beam MEMS Resonator
,” Sixth EUROMECH Nonlinear Dynamics Conference (
ENOC
), St. Petersburg, Russia, June 30–July 4, pp.
1
7
.http://lib.physcon.ru/file?id=94bf99726212
30.
Debray
,
A.
,
2011
, “
Manipulators Inspired by the Tongue of the Chameleon
,”
Bioinspiration Biomimetics
,
6
(
2
), p.
026002
.
You do not currently have access to this content.