Rolling mill system may lose its stability due to the change of lubrication conditions. Based on the rolling mill vertical–torsional–horizontal coupled dynamic model with nonlinear friction considered, the system stability domain is analyzed by Hopf bifurcation algebraic criterion. Subsequently, the Hopf bifurcation types at different bifurcation points are judged. In order to restrain the instability oscillation induced by the system Hopf bifurcation, a linear and nonlinear feedback controller is constructed, in which the uncoiling speed of the uncoiler is selected as the control variable, and variations of tensions at entry and exit as well as system vibration responses are chosen as feedback variables. On this basis, the linear control of the controller is studied using the Hopf bifurcation algebraic criterion. And the nonlinear control of the controller is studied according to the center manifold theorem and the normal form theory. The results show that the system stability domain can be expanded by reducing the linear gain coefficient. Through choosing an appropriate nonlinear gain coefficient, the occurring of the system subcritical bifurcation can be suppressed. And system vibration amplitudes reduce as the increase of the nonlinear gain coefficient. Therefore, introducing the linear and nonlinear feedback controller into the system can improve system dynamic characteristics significantly. The production efficiency and the product quality can be guaranteed as well.

References

1.
Tlusty
,
J.
,
Chandra
,
G.
,
Critchley
,
S.
, and
Paton
,
D.
,
1982
, “
Chatter in Cold Rolling
,”
CIRP Ann. – Manuf. Technol.
,
31
(
1
), pp.
195
199
.
2.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Review of Chatter Studies in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1499
1530
.
3.
Hu
,
P. H.
, and
Ehmann
,
K. F.
,
2001
, “
Fifth Octave Mode Chatter in Rolling
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
6
), pp.
797
809
.
4.
Yarita
,
I.
,
Furukawa
,
K.
, and
Seino
,
Y.
,
1978
, “
An Analysis of Chattering in Cold Rolling of Ultrathin Gauge Steel Strip
,”
ISIJ Int.
,
18
(
1
), pp.
1
10
.
5.
Meehan
,
P. A.
,
2002
, “
Vibration Instability in Rolling Mills: Modelling and Experimental Results
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
221
228
.
6.
Tamiya
,
T.
,
Furui
,
K.
, and
Lida
,
H.
,
1980
, “
Analysis of Chattering Phenomenon in Cold Rolling
,”
International Conference on Steel Rolling, Science and Technology of Flat Rolled Products
, Tokyo, Japan, Sept. 29–Oct. 4, Vol.
2
, pp.
1191
1207
.
7.
Mehrabi
,
R.
,
Salimi
,
M.
, and
Ziaei-Rad
,
S.
,
2015
, “
Finite Element Analysis on Chattering in Cold Rolling and Comparison With Experimental Results
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061013
.
8.
Krot
,
P.
,
2008
, “
Nonlinear Vibrations and Backlashes Diagnostics in the Rolling Mills Drive Trains
,” Sixth EUROMECH Nonlinear Dynamics Conference (
ENOC
), St. Petersburg, Russia, June 30–July 4, pp.
26
30
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiim6HWjf7UAhUJOz4KHUMhAPQQFggqMAE&url=http%3A%2F%2Flib.physcon.ru%2Ffile%3Fid%3D11bc15c943ca&usg=AFQjCNHibHp4xc4b7g-MElu-F_qBkRF9pQ
9.
Swiatoniowski
,
A.
,
1996
, “
Interdependence Between Rolling Mill Vibrations and the Plastic Deformation Process
,”
J. Mater. Process. Technol.
,
61
(
4
), pp.
354
364
.
10.
Yun
,
I. S.
,
1995
, “
Chatter in Rolling
,” Ph. D. thesis, Northwestern University, Evanston, IL.
11.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Chatter in the Strip Rolling Process—Part 1: Dynamic Model of Rolling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
330
336
.
12.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Chatter in the Strip Rolling Process—Part 2: Dynamic Rolling Experiments
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
337
342
.
13.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Chatter in the Strip Rolling Process—Part 3: Chatter Model
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
343
348
.
14.
Hu
,
P. H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process—Part 1: Homogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
1
19
.
15.
Hu
,
P. H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process—Part 2: Inhomogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
21
31
.
16.
Hu
,
P. H.
,
Zhao
,
H. Y.
, and
Ehmann
,
K. F.
,
2006
, “
Third-Octave-Mode Chatter in Rolling—Part 1: Chatter Model
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
8
), pp.
1267
1277
.
17.
Hu
,
P. H.
,
Zhao
,
H. Y.
, and
Ehmann
,
K. F.
,
2006
, “
Third-Octave-Mode Chatter in Rolling—Part 2: Stability of a Single-Stand Mill
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
8
), pp.
1279
1292
.
18.
Hu
,
P. H.
,
Zhao
,
H. Y.
, and
Ehmann
,
K. F.
,
2006
, “
Third-Octave-Mode Chatter in Rolling—Part 3: Stability of a Multi-Stand Mill
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
8
), pp.
1293
1303
.
19.
Shi
,
P. M.
,
Xia
,
K. W.
,
Liu
,
B.
, and
Jiang
,
J. S.
,
2012
, “
Dynamics Behaviours of Rolling Mill's Nonlinear Torsional Vibration of Multi-Degree-of-Freedom Main Drive System With Clearance
,”
J. Mech. Eng.
,
48
(
17
), pp.
57
64
.
20.
Sims
,
R. B.
, and
Arthur
,
D. F.
,
1952
, “
Speed-Dependent Variables in Cold Strip Rolling
,”
J. Iron Steel Inst.
,
172
(
3
), pp.
285
295
.
21.
Thomsen
,
J. J.
,
1999
, “
Using Fast Vibrations to Quench Friction-Induced Oscillations
,”
J. Sound Vib.
,
228
(
5
), pp.
1079
1102
.
22.
Panjkovic
,
V.
,
Gloss
,
R.
,
Steward
,
J.
,
Dilks
,
S.
,
Steward
,
R.
, and
Fraser
,
G.
,
2012
, “
Causes of Chatter in a Hot Strip Mill: Observations, Qualitative Analyses and Mathematical Modelling
,”
J. Mater. Process. Technol.
,
212
(
4
), pp.
954
961
.
23.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y. H.
,
1981
,
Theory and Applications of Hopf Bifurcation
,
Cambridge University Press
,
Cambridge, UK
.
24.
Li
,
H. G.
, and
Wen
,
B. C.
,
2000
, “
Nonlinear Vibrations of Self-excited Vibration Systems With Clearances and Oscillating Boundaries
,”
J. Vib. Eng.
,
13
(
1
), pp.
122
127
.
25.
Chen
,
G.
,
Moiola
,
J. L.
, and
Wang
,
H. O.
,
2000
, “
Bifurcation Control: Theories, Methods, and Applications
,”
Int. J. Bifurcation Chaos
,
10
(
3
), pp.
511
548
.
26.
Abed
,
E. H.
, and
Fu
,
J. H.
,
1986
, “
Local Feedback Stabilization and Bifurcation Control, I. Hopf Bifurcation
,”
Syst. Control Lett.
,
7
(
1
), pp.
11
17
.
27.
Xie
,
Y.
,
Chen
,
L.
,
Kang
,
Y. M.
, and
Aihara
,
K.
,
2008
, “
Controlling the Onset of Hopf Bifurcation in the Hodgkin-Huxley Model
,”
Phys. Rev. E
,
77
(
1
), p.
061921
.
28.
Nguyen
,
L. H.
, and
Hong
,
K. S.
,
2012
, “
Hopf Bifurcation Control Via a Dynamic State-feedback Control
,”
Phys. Lett. A
,
376
(
4
), pp.
442
446
.
29.
Zeng
,
L. Q.
,
Zang
,
Y.
, and
Gao
,
Z. Y.
,
2016
, “
Multiple-Modal-Coupling Modeling and Stability Analysis of Cold Rolling Mill Vibration
,”
Shock Vib.
,
2016
, p.
2347386
.http://dx.doi.org/10.1155/2016/2347386
30.
Zeng
,
L. Q.
,
Zang
,
Y.
,
Gao
,
Z. Y.
,
Liu
,
K.
, and
Liu
,
X. C.
,
2015
, “
Stability Analysis of the Rolling Mill Multiple-Modal-Coupling Vibration Under Nonlinear Friction
,”
J. Vibroeng.
,
17
(
6
), pp.
2824
2836
.http://www.jve.lt/Vibro/JVE-2015-17-6/JVE01715091718.html
31.
Liu
,
W. M.
,
1994
, “
Criterion of Hopf Bifurcation Without Using Eigenvalues
,”
J. Math. Anal. Appl.
,
182
(
1
), pp.
250
256
.
32.
Zou
,
J. X.
, and
Xu
,
L. J.
,
1998
,
Tandem Mill Vibration Control
,
Metallurgical Industry Press
,
Beijing, China
.
33.
Liu
,
S.
,
Wang
,
Z. L.
, and
Wang
,
J. J.
,
2016
, “
Sliding Bifurcation Research of a Horizontal-Torsional Coupled Main Drive System of Rolling Mill
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
441
455
.
34.
Zhao
,
H. Y.
,
2008
, “
Regenerative Chatter in Cold Rolling
,”
Ph. D. thesis
, Northwestern University, Evanston, IL. http://gradworks.umi.com/33/03/3303624.html
35.
Gao
,
Z. Y.
,
Zang
,
Y.
, and
Han
,
T.
,
2012
, “
Hopf Bifurcation and Stability Analysis on the Mill Drive System
,”
Appl. Mech. Mater.
,
121–126
, pp.
1514
1520
.
36.
Marsden
,
J. E.
, and
McCracken
,
M.
,
1976
,
The Hopf Bifurcation and Its Applications
,
Springer-Verlag
,
New York
.
37.
Yu
,
P.
,
1998
, “
Computation of Normal Forms Via a Perturbation Technique
,”
J. Sound Vib.
,
211
(
1
), pp.
19
38
.
You do not currently have access to this content.