A power flow analysis of finite coupled Mindlin plates with a blocking mass at the junction of the coupled plates is investigated using the method of reverberation-ray matrix (MRRM). An exact solution is derived by the plate equations of motion to satisfy the boundary condition. The wave amplitude coefficients are obtained from the continuity conditions at driving force locations, and the line junction of two plates connected at an arbitrary angle. The blocking mass located at the junction of the two plates is modeled as a Timoshenko beam. The dynamic responses of the finite coupled Mindlin plates are verified by comparing with finite element method (FEM) results. The effects of the connected angles, blocking mass, and structural damping on the input power and transmitted power are calculated and analyzed. Numerical simulations of the finite coupled Mindlin plates with a blocking mass show that the present method can predict the dynamic behavior.

References

1.
Krilić
,
T.
,
2014
, “
News From IMO
,”
Trans. Marit. Sci.
,
3
(
2
), pp.
166
169
.
2.
Boisson
,
C.
,
Guyader
,
J.
,
Millot
,
P.
, and
Lesueur
,
C.
,
1982
, “
Energy Transmission in Finite Coupled Plates, Part II: Application to an L Shaped Structure
,”
J. Sound Vib.
,
81
(
1
), pp.
93
105
.
3.
McCollum
,
M.
, and
Cuschieri
,
J.
,
1990
, “
Thick Plate Bending Wave Transmission Using a Mobility Power Flow Approach
,”
J. Acoust. Soc. Am.
,
88
(
3
), pp.
1472
1479
.
4.
Cuschieri
,
J.
, and
McCollum
,
M.
,
1996
, “
In-Plane and Out-of-Plane Waves' Power Transmission Through an L-Plate Junction Using the Mobility Power Flow Approach
,”
J. Acoust. Soc. Am.
,
100
(
2
), pp.
857
870
.
5.
Kessissoglou
,
N. J.
,
2004
, “
Power Transmission in L-Shaped Plates Including Flexural and In-Plane Vibration
,”
J. Acoust. Soc. Am.
,
115
(
3
), pp.
1157
1169
.
6.
Wang
,
Z. H.
,
Xing
,
J. T.
, and
Price
,
W. G.
,
2002
, “
An Investigation of Power Flow Characteristics of L-Shaped Plates Adopting a Substructure Approach
,”
J. Sound Vib.
,
250
(
4
), pp.
627
648
.
7.
Skeen
,
M. B.
, and
Kessissoglou
,
N. J.
,
2007
, “
An Investigation of Transmission Coefficients for Finite and Semi-Infinite Coupled Plate Structures
,”
J. Acoust. Soc. Am.
,
122
(
2
), pp.
814
822
.
8.
Kessissoglou
,
N. J.
,
2001
, “
Active Attenuation of the Wave Transmission Through an L-Plate Junction
,”
J. Acoust. Soc. Am.
,
110
(
1
), pp.
267
277
.
9.
Liu
,
C. C.
,
Li
,
F. M.
,
Liang
,
T. W.
, and
Huang
,
W. H.
,
2011
, “
The Wave and Vibratory Power Transmission in a Finite L-Shaped Mindlin Plate With Two Simply Supported Opposite Edges
,”
Acta Mech. Sin.
,
27
(
5
), pp.
785
795
.
10.
Chen
,
Y.
,
Jin
,
G.
,
Zhu
,
M.
,
Liu
,
Z.
,
Du
,
J.
, and
Li
,
W. L.
,
2012
, “
Vibration Behaviors of a Box-Type Structure Built up by Plates and Energy Transmission Through the Structure
,”
J. Sound Vib.
,
331
(
4
), pp.
849
867
.
11.
Lin
,
T. R.
,
Tan
,
A. C.
,
Yan
,
C.
, and
Hargreaves
,
D.
,
2011
, “
Vibration of L-Shaped Plates Under a Deterministic Force or Moment Excitation: A Case of Statistical Energy Analysis Application
,”
J. Sound Vib.
,
330
(
20
), pp.
4780
4797
.
12.
Farag
,
N.
, and
Pan
,
J.
,
1998
, “
On the Free and Forced Vibration of Single and Coupled Rectangular Plates
,”
J. Acoust. Soc. Am.
,
104
(
1
), pp.
204
216
.
13.
Park
,
D.-H.
,
Hong
,
S.-Y.
,
Kil
,
H.-G.
, and
Jeon
,
J.-J.
,
2001
, “
Power Flow Models and Analysis of In-Plane Waves in Finite Coupled Thin Plates
,”
J. Sound Vib.
,
244
(
4
), pp.
651
668
.
14.
Du
,
J.
,
Li
,
W. L.
,
Liu
,
Z.
,
Yang
,
T.
, and
Jin
,
G.
,
2011
, “
Free Vibration of Two Elastically Coupled Rectangular Plates With Uniform Elastic Boundary Restraints
,”
J. Sound Vib.
,
330
(
4
), pp.
788
804
.
15.
Howard
,
S. M.
, and
Pao
,
Y.-H.
,
1998
, “
Analysis and Experiments on Stress Waves in Planar Trusses
,”
ASCE J. Eng. Mech.
,
124
(
8
), pp.
884
891
.
16.
Jiang
,
J.
, and
Chen
,
W.
,
2009
, “
Reverberation-Ray Analysis of Moving or Distributive Loads on a Non-Uniform Elastic Bar
,”
J. Sound Vib.
,
319
(
1
), pp.
320
334
.
17.
Vemula
,
C.
, and
Norris
,
A.
,
1997
, “
Flexural Wave Propagation and Scattering on Thin Plates Using Mindlin Theory
,”
Wave Motion
,
26
(
1
), pp.
1
12
.
18.
Zhang
,
X.
,
Liu
,
G.
, and
Lam
,
K.
,
2001
, “
Coupled Vibration Analysis of Fluid-Filled Cylindrical Shells Using the Wave Propagation Approach
,”
Appl. Acoust.
,
62
(
3
), pp.
229
243
.
19.
Cremer
,
L.
,
Heckl
,
M.
, and
Petersson
,
B.
,
2005
,
Structure-Borne Sound
,
Springer
,
Berlin
.
20.
Wang
,
C.
,
1995
, “
Timoshenko Beam-Bending Solutions in Terms of Euler-Bernoulli Solutions
,”
ASCE J. Eng. Mech.
,
121
(
6
), pp.
763
765
.
You do not currently have access to this content.