This paper presents an experimental study of robustness of multi-objective optimal sliding mode control, which is designed in a previous study. Inertial and stiffness uncertainties are introduced to a two degrees-of-freedom (DOF) under-actuated rotary flexible joint system. A randomly selected design from the Pareto set of multi-objective optimal sliding mode controls is used in the experiments. Three indices are introduced to evaluate the performance variation of the tracking control in the presence of uncertainties. We have found that the multi-objective optimal sliding mode control is quite robust against the inertial and stiffness uncertainties in terms of maintaining the stability and delivering satisfactory tracking performance as compared to the control of the nominal system, even when the uncertainty is not a small quantity. Furthermore, we have studied the effect of upper bounds of the model estimation error on the stability of the closed-loop system.

References

1.
Qin
,
Z.-C.
,
Xiong
,
F.-R.
,
Ding
,
Q.
,
Hernndez
,
C.
,
Fernandez
,
J.
,
Schtze
,
O.
, and
Sun
,
J.-Q.
,
2015
, “
Multi-Objective Optimal Design of Sliding Mode Control With Parallel Simple Cell Mapping Method
,”
J. Vib. Control
, epub.
2.
Kharitonov
,
V. L.
,
1979
, “
Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations
,”
Differ. Equations
,
14
, pp.
1483
1485
.
3.
Barmish
,
B.
,
1984
, “
Invariance of the Strict Hurwitz Property for Polynomials With Perturbed Coefficients
,”
IEEE Trans. Autom. Control
,
29
(
10
), pp.
935
936
.
4.
Bartlett
,
A. C.
,
Hollot
,
C. V.
, and
Lin
,
H.
,
1988
, “
Root Locations of an Entire Polytope of Polynomials: It Suffices to Check the Edges
,”
Math. Control, Signals Syst.
,
1
(
1
), pp.
61
71
.
5.
Tian
,
Y.-P.
,
Feng
,
C.-B.
, and
Xin
,
X.
,
1994
, “
Robust Stability of Polynomials With Multilinearly Dependent Coefficient Perturbations
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
554
558
.
6.
Doyle
,
J.
,
1982
, “
Analysis of Feedback Systems With Structured Uncertainties
,”
Control Theory Appl., IEE Proc. D
,
129
(
6
), pp.
242
250
.
7.
Packard
,
A.
, and
Doyle
,
J.
,
1993
, “
The Complex Structured Singular Value
,”
Automatica
,
29
(
1
), pp.
71
109
.
8.
Zames
,
G.
,
1981
, “
Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses
,”
IEEE Trans. Autom. Control
,
26
(
2
), pp.
301
320
.
9.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
10.
Gasbarri
,
P.
,
Monti
,
R.
, and
Sabatini
,
M.
,
2014
, “
Very Large Space Structures: Non-Linear Control and Robustness to Structural Uncertainties
,”
Acta Astronautica
,
93
, pp.
252
265
.
11.
González
,
L.
, and
Aguilar
,
L.
,
2000
, “
H∞ Robust Control Design for an Arm Manipulator
,”
J. Intell. Rob. Syst.
,
27
(
1–2
), pp.
21
30
.
12.
Huang
,
C. Q.
,
Peng
,
X. F.
,
Jia
,
C. Z.
, and
Huang
,
J. D.
,
2008
, “
Guaranteed Robustness/Performance Adaptive Control With Limited Torque for Robot Manipulators
,”
Mechatronics
,
18
(
10
), pp.
641
652
.
13.
Lara
,
D.
,
Romero
,
G.
,
Sanchez
,
A.
,
Lozano
,
R.
, and
Guerrero
,
A.
,
2010
, “
Robustness Margin for Attitude Control of a Four Rotor Mini-Rotorcraft: Case of Study
,”
Mechatronics
,
20
(
1
), pp.
143
152
.
14.
Costa
,
M. A.
,
Braga
,
A. P.
,
Menezes
,
B. R.
,
Teixeira
,
R. A.
, and
Parma
,
G. G.
,
2003
, “
Training Neural Networks With a Multi-Objective Sliding Mode Control Algorithm
,”
Neurocomputing
,
51
, pp.
467
473
.
15.
Gasimov
,
R. N.
,
Karamancioglu
,
A.
, and
Yazici
,
A.
,
2005
, “
A Nonlinear Programming Approach for the Sliding Mode Control Design
,”
Appl. Math. Modell.
,
29
(
11
), pp.
1135
1148
.
16.
Wu
,
L.
,
Shi
,
P.
, and
Gao
,
H.
,
2010
, “
State Estimation and Sliding-Mode Control of Markovian Jump Singular Systems
,”
IEEE Trans. Autom. Control
,
55
(
5
), pp.
1213
1219
.
17.
Wu
,
L.
,
Zheng
,
W.
, and
Gao
,
H.
,
2013
, “
Dissipativity-Based Sliding Mode Control of Switched Stochastic Systems
,”
IEEE Trans. Autom. Control
,
58
(
3
), pp.
785
791
.
18.
Pukdeboon
,
C.
, and
Kumam
,
P.
,
2015
, “
Robust Optimal Sliding Mode Control for Spacecraft Position and Attitude Maneuvers
,”
Aerosp. Sci. Technol.
,
43
, pp.
329
342
.
19.
Hua
,
J.
,
An
,
L.-X.
, and
Li
,
Y.-M.
,
2015
, “
Bionic Fuzzy Sliding Mode Control and Robustness Analysis
,”
Applied Mathematical Modelling
,
39
(
15
), pp.
4482
4493
.
20.
Ji
,
Y.
, and
Qiu
,
J.
,
2014
, “
Robust Stability Criterion for Uncertain Stochastic Systems With Time-Varying Delay Via Sliding Mode Control
,”
Appl. Math. Comput.
,
238
, pp.
70
81
.
21.
Zhang
,
H.
,
Wang
,
J.
, and
Shi
,
Y.
,
2013
, “
Robust Sliding-Mode Control for Markovian Jump Systems Subject to Intermittent Observations and Partially Known Transition Probabilities
,”
Syst. Control Lett.
,
62
(
12
), pp.
1114
1124
.
22.
Qin
,
Z.-C.
,
Zhong
,
S.
, and
Sun
,
J. Q.
,
2013
, “
Sliding Mode Control Experiments of Uncertain Dynamical Systems With Time-Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(12), pp.
3558
3566
.
23.
Ashrafiuon
,
H.
, and
Erwin
,
R. S.
,
2008
, “
Sliding Mode Control of Underactuated Multibody Systems and Its Application to Shape Change Control
,”
Int. J. Control
,
81
(
12
), pp.
1849
1858
.
24.
Xiong
,
F.
,
Qin
,
Z.
,
Hernández
,
C.
,
Sardahi
,
Y.
,
Narajani
,
Y.
,
Liang
,
W.
,
Xue
,
Y.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2013
, “
A Multi-Objective Optimal PID Control for a Nonlinear System With Time Delay
,”
Theor. Appl. Mech. Lett.
,
3
(
6
), p.
063006
.
25.
Xiong
,
F.-R.
,
Qin
,
Z.-C.
,
Xue
,
Y.
,
Schütze
,
O.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2014
, “
Multi-Objective Optimal Design of Feedback Controls for Dynamical Systems With Hybrid Simple Cell Mapping Algorithm
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
1465
1473
.
26.
Xiong
,
F.-R.
,
Qin
,
Z.-C.
,
Ding
,
Q.
,
Hernández
,
C.
,
Fernandez
,
J.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2015
, “
Parallel Cell Mapping Method for Global Analysis of High-Dimensional Nonlinear Dynamical Systems
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111010
.
27.
Hernández
,
C.
,
Naranjani
,
Y.
,
Sardahi
,
Y.
,
Liang
,
W.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2013
, “
Simple Cell Mapping Method for Multi-Objective Optimal Feedback Control Design
,”
Int. J. Dyn. Control
,
1
(
3
), pp.
231
238
.
You do not currently have access to this content.