In this paper, a novel piezoelectric vibration energy harvester using rolling mechanism is presented, with the advantage of harvesting more vibration energy and reducing the impact forces caused by the oscillation. The design utilizes an array arrangement of balls rolling the piezoelectric units, and a piezoelectric unit consists of a piezoceramic (PZT) layer and two raised metal layers bonded to both sides of the PZT layer. The rolling mechanism converts the irregular reciprocating vibration into the regular unidirectional rolling motion, which can generate high and relatively stable rolling force applied to the piezoelectric units. A theoretical model is developed to characterize the rolling mechanism of a ball rolling on a piezoelectric unit. And based on the model, the effects of structural design parameters on the performances of the vibration energy harvester are analyzed. The experimental results show that the rolling-based vibration energy harvester under random vibration can generate stable amplitude direct current (DC) voltage, which can be stored more conveniently than the alternating current (AC) voltage. The experimental results also demonstrate that the vibration energy harvester can generate the power about 1.5 μW at resistive load 3.3 MΩ while the maximal rolling force is about 6.5 N. Due to the function of mechanical motion rectification and compact structure, the rolling mechanism can be suitable for integrating into a variety of devices, harvesting energy from uncertain vibration source and supplying electric energy to some devices requiring specific voltage value.

References

1.
Radousky
,
H. B.
, and
Liang
,
H.
,
2012
, “
Energy Harvesting: An Integrated View of Materials, Devices and Applications
,”
Nanotechnology
,
23
(
50
), p.
502001
.
2.
Bibo
,
A.
,
Abdelkefi
,
A.
, and
Daqaq
,
M. F.
,
2015
, “
Modeling and Characterization of a Piezoelectric Energy Harvester Under Combined Aerodynamic and Base Excitations
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031017
.
3.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Micro Systems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.
4.
Toprak
,
A.
, and
Tigli
,
O.
,
2014
, “
Piezoelectric Energy Harvesting: State-of-the-Art and Challenges
,”
Appl. Phys. Rev.
,
1
(
3
), p.
031104
.
5.
Lefeuvre
,
E.
,
Sebald
,
G.
,
Guyomar
,
D.
,
Lallart
,
M.
, and
Richard
,
C.
,
2009
, “
Materials, Structures and Power Interfaces for Efficient Piezoelectric Energy Harvesting
,”
J. Electroceram.
,
22
(1), pp.
171
179
.
6.
Mitcheson
,
D. P.
,
Yeatman
,
E. M.
,
Rao
,
G. K.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.
7.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
19
(
11
), p.
1311
.
8.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
9.
Junior
,
C. D. M.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
,
327
, pp.
9
25
.
10.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.
11.
Platt
,
S. R.
,
Farritor
,
S.
, and
Haider
,
H.
,
2005
, “
On Low-Frequency Electric Power Generation With PZT Ceramics
,”
IEEE/ASME Trans. Mechatronics
,
10
(
2
), pp.
240
252
.
12.
Xu
,
T. B.
,
Siochi
,
E. J.
,
Kang
,
J. H.
,
Zuo
,
L.
,
Zhou
,
W.
,
Tang
,
X.
, and
Jiang
,
X.
,
2011
, “
A Piezoelectric PZT Ceramic Multilayer Stack for Energy Harvesting Under Dynamic Forces
,”
ASME
DETC Paper No. 2011-47720.
13.
Xu
,
T. B.
,
Siochi
,
E. J.
,
Kang
,
J. H.
,
Zuo
,
L.
,
Zhou
,
W.
,
Tang
,
X.
, and
Jiang
,
X.
,
2013
, “
Energy Harvesting Using a PZT Ceramic Multilayer Stack
,”
Smart Mater. Struct.
,
22
(
6
), p.
065015
.
14.
Paquin
,
S.
, and
St-Amant
,
Y.
,
2010
, “
Improving the Performance of a Piezoelectric Energy Harvester Using a Variable Thickness Beam
,”
Smart Mater. Struct.
,
19
(
10
), p.
105020
.
15.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
16.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1413
1420
.
17.
Chen
,
X. R.
,
Yang
,
T. Q.
,
Wang
,
W.
, and
Yao
,
X.
,
2012
, “
Vibration Energy Harvesting With a Clamped Piezoelectric Circular Diaphragm
,”
Ceram. Int.
,
38
, pp.
S271
S274
.
18.
Galchev
,
T.
,
Aktakka
,
E. E.
, and
Najafi
,
K.
,
2012
, “
A Piezoelectric Parametric Frequency Increased Generator for Harvesting Low-Frequency Vibrations
,”
J. Microelectromech. Syst.
,
21
(
6
), pp.
1311
1320
.
19.
Lueke
,
J.
,
Rezaei
,
M.
, and
Moussa
,
W. A.
,
2014
, “
Investigation of Folded Spring Structures for Vibration-Based Piezoelectric Energy Harvesting
,”
J. Micromech. Microeng.
,
24
(
12
), p.
125011
.
20.
Rezaeisaray
,
M.
,
Gowini
,
M. E.
,
Sameoto
,
D.
,
Raboud
,
D.
, and
Moussa
,
W.
,
2015
, “
Wide-Bandwidth Piezoelectric Energy Harvester With Polymeric Structure
,”
J. Micromech. Microeng.
,
25
(
1
), p.
015018
.
21.
Shahruz
,
S.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(3–5), pp.
987
998
.
22.
Xiao
,
Z.
,
Yang
,
T. Q.
,
Dong
,
Y.
, and
Wang
,
X. C.
,
2014
, “
Energy Harvester Array Using Piezoelectric Circular Diaphragm for Broadband Vibration
,”
Appl. Phys. Lett.
,
104
(
22
), p.
223904
.
23.
Hajati
,
A.
, and
Kim
,
S. G.
,
2011
, “
Ultra-Wide Bandwidth Piezoelectric Energy Harvesting
,”
Appl. Phys. Lett.
,
99
(
8
), p.
083105
.
24.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.
25.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
.
26.
Arrieta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.
27.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
28.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.
29.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Physica D
,
239
(
10
), pp.
640
653
.
30.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Andò
,
B.
,
Baglio
,
S.
, and
Trigona
,
C.
,
2010
, “
Improved Energy Harvesting From Wideband Vibrations by Nonlinear Piezoelectric Converters
,”
Sens. Actuators A
,
162
(
2
), pp.
425
431
.
31.
Peters
,
C.
,
Maurath
,
D.
,
Schock
,
W.
,
Mezger
,
F.
, and
Manoli
,
Y.
,
2009
, “
A Closed-Loop Wide-Range Tunable Mechanical Resonator for Energy Harvesting Systems
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094004
.
32.
Mansour
,
M. O.
,
Arafa
,
M. H.
, and
Megahed
,
S. M.
,
2010
, “
Resonator With Magnetically Adjustable Natural Frequency for Vibration Energy Harvesting
,”
Sens. Actuators A
,
163
(
1
), pp.
297
303
.
33.
Aboulfotoh
,
N. A.
,
Arafa
,
M. H.
, and
Megahed
,
S. M.
,
2013
, “
A Self-Tuning Resonator for Vibration Energy Harvesting
,”
Sens. Actuators A
,
201
, pp.
328
334
.
34.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
35.
Chen
,
L. Q.
,
Zhang
,
G. C.
, and
Ding
,
H.
,
2015
, “
Internal Resonance in Forced Vibration of Coupled Cantilevers Subjected to Magnetic Interaction
,”
J. Sound Vib.
,
354
, pp.
196
218
.
36.
Challa
,
V. R.
,
Prasad
,
M. G.
, and
Fisher
,
F. T.
,
2009
, “
A Coupled Piezoelectric-Electromagnetic Energy Harvesting Technique for Achieving Increased Power Output Through Damping Matching
,”
Smart Mater. Struct.
,
18
(
9
), p.
095029
.
37.
Li
,
P.
,
Gao
,
S.
, and
Cai
,
H.
,
2015
, “
Modeling and Analysis of Hybrid Piezoelectric and Electromagnetic Energy Harvesting From Random Vibrations
,”
Microsyst. Technol.
,
21
(
2
), pp.
401
414
.
38.
Zuo
,
L.
, and
Tang
,
X.
,
2013
, “
Large-Scale Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1405
1430
.
39.
Kim
,
H. W.
,
Riya
,
S. P.
,
Chino
,
K. U.
, and
Newnham
,
R. E.
,
2005
, “
Piezoelectric Energy Harvesting Under High Pre-Stressed Cyclic Vibrations
,”
J. Electroceram.
,
15
(
1
), pp.
27
34
.
40.
Mo
,
C.
,
Arnold
,
D.
,
Kinsel
,
W. C.
, and
Clark
,
W. W.
,
2012
, “
Modeling and Experimental Validation of Unimorph Piezoelectric Cymbal Design in Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
, pp.
828
836
.
41.
Xu
,
T. B.
,
Siochi
,
E. J.
,
Zuo
,
L.
,
Jiang
,
X.
, and
Kang
,
J. H.
,
2012
, “
Multistage Force Amplification of Piezoelectric Stacks
,” U.S. Patent Publication No. 2012/0119620.
42.
Xu
,
T. B.
,
Tolliver
,
L.
,
Jiang
,
X.
, and
Su
,
J.
,
2013
, “
A Single Crystal Lead Magnesium Niobate-Lead Titanate Multilayer-Stacked Cryogenic Flextensional Actuator
,”
Appl. Phys. Lett.
,
102
(
4
), p.
042906
.
43.
Xu
,
T. B.
,
Jiang
,
X.
, and
Su
,
J.
,
2011
, “
A Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System
,”
Appl. Phys. Lett.
,
98
(
24
), p.
243503
.
44.
Aldraihem
,
O.
, and
Baz
,
A.
,
2011
, “
Energy Harvester With a Dynamic Magnifier
,”
J. Intell. Mater. Syst. Struct.
,
22
(
6
), pp.
521
530
.
45.
Zhou
,
W.
,
Penamalli
,
G. R.
, and
Zuo
,
L.
,
2012
, “
An Efficient Vibration Energy Harvester With a Multi-Mode Dynamic Magnifier
,”
Smart Mater. Struct.
,
21
(
1
), p.
015014
.
46.
Aladwani
,
A.
,
Arafa
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031004
.
47.
Aladwani
,
A.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2015
, “
Piezoelectric Vibration Energy Harvesting From a Two-Dimensional Coupled Acoustic-Structure System With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031002
.
48.
Ma
,
X.
,
Wilson
,
A.
,
Rahn
,
C. D.
, and
Trolier-McKinstry
,
S.
,
2016
, “
Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021005
.
49.
Li
,
Z.
,
Brindak
,
Z.
, and
Zuo
,
L.
,
2011
, “
Modeling of an Electromagnetic Vibration Energy Harvester With Motion Magnification
,”
ASME
Paper No. IMECE2011-65613.
50.
Tiwari
,
R.
,
Ryoo
,
K.
,
Schlichting
,
A.
, and
Garcia
,
E.
,
2013
, “
Extremely Low-Loss Rectification Methodology for Low-Power Vibration Energy Harvesters
,”
Smart Mater. Struct.
,
22
(
6
), p.
062001
.
51.
Li
,
Z.
,
Zuo
,
L.
,
Kuang
,
J.
, and
Luhrs
,
G.
,
2013
, “
Energy-Harvesting Shock Absorber With a Mechanical Motion Rectifier
,”
Smart Mater. Struct.
,
22
(
2
), p.
025008
.
52.
Yang
,
Z.
, and
Zu
,
J.
,
2014
, “
High-Efficiency Compressive-Mode Energy Harvester Enhanced by a Multi-Stage Force Amplification Mechanism Energy
,”
Energy Convers. Manage.
,
88
, pp.
829
833
.
53.
Khaligh
,
A.
,
Zeng
,
P.
, and
Zheng
,
C.
,
2010
, “
Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art
,”
IEEE Trans. Ind. Electron.
,
57
(
3
), pp.
850
860
.
54.
Shafer
,
M. W.
, and
Garcia
,
E.
,
2013
, “
The Power and Efficiency Limits of Piezoelectric Energy Harvesting
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021007
.
55.
Paradiso
,
J. A.
, and
Starner
,
T.
,
2005
, “
Energy Scavenging for Mobile and Wireless Electronics
,”
IEEE Pervasive Comput.
, 05, pp.
18
27
.
56.
Bowers
,
B. J.
, and
Arnold
,
D. P.
,
2009
, “
Spherical, Rolling Magnet Generators for Passive Energy Harvesting From Human Motion
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094008
.
57.
Flom
,
D. G.
, and
Bueche
,
A. M.
,
1959
, “
Theory of Rolling Friction for Spheres
,”
J. Appl. Phys.
,
30
(
11
), pp.
1725
1730
.
58.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p.
015035
.
59.
Uchino
,
K.
, and
Ishii
,
T.
,
2010
, “
Energy Flow Analysis in Piezoelectric Energy Harvesting Systems
,”
Ferroelectrics
,
400
(
1
), pp.
305
320
.
60.
Liang
,
J.
, and
Liao
,
W. H.
,
2010
, “
Energy Flow in Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
20
(
1
), p.
015005
.
You do not currently have access to this content.