This study focuses on sound transmission frequency response through honeycomb core sandwich panels with in-plane orientation. Specifically, an optimization technique has been presented to determine the honeycomb unit cell geometric parameters that maximize the sound transmission loss (STL) through a sandwich panel, while maintaining constraints of constant mass and overall dimensions of panel length and height. The vibration characteristics and STL response of a sandwich panel are parameterized in terms of four honeycomb unit cell independent geometric parameters; two side lengths, cell wall thickness, and interior cell wall angle. With constraints of constant mass and overall dimensions, relationships are determined such that the number of independent variables needed to define the honeycomb cell and panel geometry is reduced to three; the integer number of unit cells in the longitudinal direction of the core, number of unit cells in the height direction, and interior cell wall angle. The optimization procedure is implemented by linking a structural acoustic finite-element (FE) model of the panel, with modefrontier, a general purpose optimization software. Optimum designs are obtained in representative frequency ranges within the resonance region of the STL response. Optimized honeycomb geometric solutions show at least 20% increase in STL response compared to standard hexagonal honeycomb core panels. It is found that the STL response is not only affected by the cell wall angle, but strongly depends also on the number of unit cells in the horizontal and vertical direction.

References

1.
Evans
,
M. J.
,
Faulkner
,
S. L.
,
Fisher
,
R.
,
Wells
,
T. C.
, and
Hadlum
,
P.
,
1996
, “
Light-Weight, High-Strength, Stiff Panels
,”
U.S. Patent No. 5,445,861
.
2.
Gu
,
S.
,
Lu
,
T. J.
, and
Evans
,
A. G.
,
2001
, “
On the Design of Two-Dimensional Cellular Metals for Combined Heat Dissipation and Structural Load Capacity
,”
Int. J. Heat Mass Transfer
,
44
(
11
), pp.
2163
2175
.
3.
Carbery
,
D. J.
,
Ikegami
,
R.
,
Martin
,
T. D.
,
Newton
,
J. F.
, and
Westre
,
W. N.
,
1995
, “
Lightweight Honeycomb Panel Structure
,”
U.S. Patent No. 5,445,861
.
4.
Paik
,
J. K.
,
Thayamballi
,
A. K.
, and
Kim
,
G. S.
,
1999
, “
The Strength Characteristics of Aluminum Honeycomb Sandwich Panels
,”
Thin-Walled Struct.
,
35
(
3
), pp.
205
231
.
5.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
6.
Vinson
,
J. R.
,
2001
, “
Sandwich Structures
,”
ASME Appl. Mech. Rev.
,
54
(
3
), pp.
201
214
.
7.
Nilsson
,
A. C.
,
1990
, “
Wave Propagation in and Sound Transmission Through Sandwich Plates
,”
J. Sound Vib.
,
138
(
1
), pp.
73
94
.
8.
El-Raheb
,
M.
, and
Wagner
,
P.
,
1997
, “
Transmission of Sound Across a Trusslike Periodic Panel; 2-D Analysis
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2176
2183
.
9.
Kim
,
Y.-J.
, and
Han
,
J.-H.
,
2013
, “
Identification of Acoustic Characteristics of Honeycomb Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
11006
.
10.
Qian
,
Z.
,
Chang
,
D.
,
Liu
,
B.
, and
Liu
,
K.
,
2013
, “
Prediction of Sound Transmission Loss for Finite Sandwich Panels Based on a Test Procedure on Beam Elements
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
61005
.
11.
Ng
,
C. F.
, and
Hui
,
C. K.
,
2008
, “
Low Frequency Sound Insulation Using Stiffness Control With Honeycomb Panels
,”
Appl. Acoust.
,
69
(
4
), pp.
293
301
.
12.
Ruzzene
,
M.
,
Mazzarella
,
L.
,
Tsopelas
,
P.
, and
Scarpa
,
F.
,
2002
, “
Wave Propagation in Sandwich Plates With Periodic Auxetic Core
,”
J. Intell. Mater. Syst. Struct.
,
13
(
9
), pp.
587
597
.
13.
Ruzzene
,
M.
, and
Scarpa
,
F.
,
2003
, “
Control of Wave Propagation in Sandwich Beams With Auxetic Core
,”
J. Intell. Mater. Syst. Struct.
,
14
(
7
), pp.
443
453
.
14.
Scarpa
,
F.
, and
Tomlinson
,
G.
,
2000
, “
Theoretical Characteristics of the Vibration of Sandwich Plates With In-Plane Negative Poisson's Ratio Values
,”
J. Sound Vib.
,
230
(
1
), pp.
45
67
.
15.
Watters
,
B. G.
, and
Kurtze
,
G.
,
1959
, “
New Wall Design for High Transmission Loss or High Damping
,”
J. Acoust. Soc. Am.
,
31
(
6
), pp.
739
748
.
16.
Ford
,
R. D.
,
Lord
,
P.
, and
Walker
,
A. W.
,
1967
, “
Sound Transmission Through Sandwich Constructions
,”
J. Sound Vib.
,
5
(
1
), pp.
9
21
.
17.
Krokosky
,
E. M.
, and
Smolenski
,
C. P.
,
1973
, “
Dilational-Mode Sound Transmission in Sandwich Panels
,”
J. Acoust. Soc. Am.
,
54
(
6
), pp.
1449
1457
.
18.
Dym
,
C. L.
, and
Lang
,
M. A.
,
1974
, “
Transmission of Sound Through Sandwich Panels
,”
J. Acoust. Soc. Am.
,
56
(
5
), pp.
1523
1532
.
19.
Narayanan
,
S.
, and
Shanbag
,
R. L.
,
1982
, “
Sound Transmission Through Damped Sandwich Panel
,”
J. Sound Vib.
,
80
(
3
), pp.
315
327
.
20.
Rossing
,
T. D.
,
2007
,
Handbook of Acoustics
,
Springer
,
New York
.
21.
Moore
,
J. A.
, and
Lyon
,
R. H.
,
1991
, “
Sound Transmission Loss Characteristics of Sandwich Panel Constructions
,”
J. Acoust. Soc. Am.
,
89
(
2
), pp.
777
791
.
22.
Vos
,
R.
, and
Barrett
,
R.
,
2011
, “
Mechanics of Pressure-Adaptive Honeycomb and Its Application to Wing Morphing
,”
Smart Mater. Struct.
,
20
(
9
), p.
094010
.
23.
Ruan
,
D.
,
Lu
,
G.
,
Wang
,
B.
, and
Yu
,
T. X.
,
2003
, “
In-Plane Dynamic Crushing of Honeycombs—A Finite Element Study
,”
Int. J. Impact Eng.
,
28
(
2
), pp.
161
182
.
24.
Papka
,
S. D.
, and
Kyriakides
,
S.
,
1994
, “
In-Plane Compressive Response and Crushing of Honeycomb
,”
J. Mech. Phys. Solids
,
42
(
10
), pp.
1499
1532
.
25.
Ju
,
J.
,
Ananthasayanam
,
B.
,
Summers
,
J. D.
, and
Joseph
,
P.
,
2010
, “
Design of Cellular Shear Bands of a Non-Pneumatic Tire-Investigation of Contact Pressure
,” SAE Paper No. 2010-01-0768.
26.
Thamburaj
,
P.
, and
Sun
,
J. Q.
,
2002
, “
Optimization of Anisotropic Sandwich Beams for Higher Sound Transmission Loss
,”
J. Sound Vib.
,
254
(
1
), pp.
23
36
.
27.
Denli
,
H.
, and
Sun
,
J. Q.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Structures With Cellular Cores for Minimum Sound Radiation
,”
J. Sound Vib.
,
301
(
1–2
), pp.
93
105
.
28.
Franco
,
F.
,
Cunefare
,
K. A.
, and
Ruzzene
,
M.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Panels
,”
ASME J. Vib. Acoust.
,
129
(
3
), p.
330
.
29.
Denli
,
H.
, and
Sun
,
J. Q.
,
2008
, “
Structural-Acoustic Optimization of Sandwich Cylindrical Shells for Minimum Interior Sound Transmission
,”
J. Sound Vib.
,
316
(
1–5
), pp.
32
49
.
30.
Ruzzene
,
M.
,
2004
, “
Vibration and Sound Radiation of Sandwich Beams With Honeycomb Truss Core
,”
J. Sound Vib.
,
277
(
4–5
), pp.
741
763
.
31.
Griese
,
D.
,
Summers
,
J. D.
, and
Thompson
,
L.
,
2014
, “
The Effect of Honeycomb Core Geometry on the Sound Transmission Performance of Sandwich Panels
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021011
.
32.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
33.
Ingard
,
U.
,
2010
,
Notes on Acoustics
,
Laxmi Publications, Ltd.
,
Hingham, MA
.
34.
Lin
,
G.
, and
Garrelick
,
J. M.
,
1977
, “
Sound Transmission Through Periodically Framed Parallel Plates
,”
J. Acoust. Soc. Am.
,
61
(
4
), pp.
1014
1018
.
35.
2009
, “
Dassault Systems, ABAQUS 6.9, Help Manual
,” Dassault Systems.
36.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Courier Corp.
37.
Doyle
,
J. F.
,
1997
, “
Wave Propagation in Structures
,”
Spectral Analysis Using Fast Discrete Fourier Transforms
(Mechanical Engineering Series),
Springer
,
New York
.
38.
Williams
,
E. G.
,
1982
, “
Numerical Evaluation of the Rayleigh Integral for Planar Radiators Using the FFT
,”
J. Acoust. Soc. Am.
,
72
(
6
), p.
2020
.
39.
Kirkup
,
S. M.
,
1994
, “
Computational Solution of the Acoustic Field Surrounding a Baffled Panel by the Rayleigh Integral Method
,”
Appl. Math. Modell.
,
18
(
7
), pp.
403
407
.
40.
Zhu
,
H. X.
,
Hobdell
,
J. R.
, and
Windle
,
A. H.
,
2001
, “
Effects of Cell Irregularity on the Elastic Properties of 2D Voronoi Honeycombs
,”
J. Mech. Phys. Solids
,
49
(
4
), pp.
857
870
.
41.
Becker
,
W.
,
1998
, “
The In-Plane Stiffnesses of a Honeycomb Core Including the Thickness Effect
,”
Arch. Appl. Mech.
,
68
(
5
), pp.
334
341
.
42.
Grediac
,
M.
,
1993
, “
A Finite Element Study of the Transverse Shear in Honeycomb Cores
,”
Int. J. Solids Struct.
,
30
(
13
), pp.
1777
1788
.
43.
2010
, “
Esteco, modeFRONTIER 4.3.0, Help Manual
,” Esteco SpA.
44.
2010
, “
Minitab 16, Help Manual
,” Minitab, Inc.
45.
Shan
,
N.
,
2011
, “
Analytical Solutions Using High Order Composite Laminate Theory for Honeycomb Sandwich Plates With Viscoelastic Frequency Dependent Damping
,” M.S. thesis, Clemson University, Clemson, SC.
You do not currently have access to this content.