While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape (SVS) for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, an SVS is transformed to a multiscale slope vibration shape (MSVS) in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numerical cases of damaged bars, and results show that MSVSs can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer (SLV) is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.

References

1.
Chang
,
F. K.
,
1997
,
Structural Health Monitoring: Current Status and Perspectives
,
Technomic Publishing
,
Lancaster, PA
.
2.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. A
,
365
(
1851
), pp.
303
315
.
3.
Wang
,
Q.
, and
Deng
,
X. M.
,
1999
, “
Damage Detection With Spatial Wavelets
,”
Int. J. Solids Struct.
,
36
(
23
), pp.
3443
3648
.
4.
Wong
,
C. N.
,
Zhu
,
W. D.
, and
Xu
,
G. Y.
,
2004
, “
On an Iterative General-Order Perturbation Method for Multiple Structural Damage Detection
,”
J. Sound Vib.
,
273
(
1–2
), pp.
363
386
.
5.
Xu
,
G. Y.
,
Zhu
,
W. D.
, and
Emory
,
B. H.
,
2007
, “
Experimental and Numerical Investigation of Structural Damage Detection Using Changes in Natural Frequencies
,”
ASME J. Vib. Acoust.
,
129
(
6
), pp.
686
700
.
6.
Zhu
,
W. D.
, and
He
,
K.
,
2013
, “
Detection of Damage in Space Frame Structures Using Changes in Natural Frequencies
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051001
.
7.
He
,
K.
, and
Zhu
,
W. D.
,
2014
, “
Detection of Loosening of Bolted Connections in a Pipeline Using Changes in Natural Frequencies
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
034503
.
8.
Xu
,
H.
,
Su
,
Z. Q.
,
Cheng
,
L.
,
Guyader
,
J. L.
, and
Hamelin
,
P.
,
2013
, “
Reconstructing Interfacial Force Distribution for Identification of Multi-Debonding in Steel-Reinforced Concrete Structures Using Noncontact Laser Vibrometry
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
507
521
.
9.
Xu
,
W.
,
Radzieński
,
M.
,
Ostachowicz
,
W.
, and
Cao
,
M. S.
,
2013
, “
Damage Detection in Plates Using Two-Dimensional Directional Gaussian Wavelets and Laser Scanned Operating Deflection Shapes
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
457
468
.
10.
An
,
Y. H.
, and
Ou
,
J. P.
,
2013
, “
Experimental and Numerical Studies on Model Updating Method of Damage Severity Identification Utilizing Four Cost Functions
,”
Struct. Control Health Monit.
,
20
(
1
), pp.
107
120
.
11.
Park
,
B.
,
Sohn
,
H.
,
Yeum
,
C. M.
, and
Truong
,
T. C.
,
2013
, “
Laser Ultrasonic Imaging and Damage Detection for a Rotating Structure
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
494
506
.
12.
Wang
,
S. S.
,
Ren
,
Q. W.
, and
Qiao
,
P. Z.
,
2006
, “
Structural Damage Detection Using Local Damage Factor
,”
J. Vib. Control
,
12
(
9
), pp.
955
973
.
13.
Cao
,
M. S.
,
Ostachowicz
,
W.
,
Radzieski
,
M.
, and
Xu
,
W.
,
2013
, “
Multiscale Shear-Strain Gradient for Detecting Delamination in Composite Laminates
,”
Appl. Phys. Lett.
,
103
(
10
), p.
101910
.
14.
Underwood
,
S. S.
,
Meyer
,
J. J.
, and
Adams
,
D. E.
,
2015
, “
Damage Localization in Composite Structures Using Nonlinear Vibration Response Properties
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031015
.
15.
Pandey
,
A. K.
,
Biswas
,
M.
, and
Samman
,
M. M.
,
1991
, “
Damage Detection From Changes in Curvature Mode Shapes
,”
J. Sound Vib.
,
145
(
2
), pp.
321
332
.
16.
Cao
,
M. S.
,
Xu
,
W.
,
Ostachowicz
,
W.
, and
Su
,
Z. Q.
,
2014
, “
Damage Identification for Beams in Noisy Conditions Based on Teager Energy Operator-Wavelet Transform Modal Curvature
,”
J. Sound Vib.
,
333
(
6
), pp.
1543
1553
.
17.
Cao
,
M. S.
,
Radzieński
,
M.
,
Xu
,
W.
, and
Ostachowicz
,
W.
,
2014
, “
Identification of Multiple Damage in Beams on Robust Curvature Mode Shapes
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
468
480
.
18.
Lestari
,
W.
,
Qiao
,
P. Z.
, and
Hanagud
,
S.
,
2007
, “
Curvature Mode Shape-Based Damage Assessment of Carbon/Epoxy Composite Beams
,”
J. Intell. Mater. Syst. Struct.
,
18
(3), pp.
189
208
.
19.
Xu
,
Y. F.
,
Zhu
,
W. D.
,
Liu
,
J.
, and
Shao
,
Y. M.
,
2014
, “
Identification of Embedded Horizontal Cracks in Beams Using Measured Mode Shapes
,”
J. Sound Vib.
,
333
(
23
), pp.
6273
6294
.
20.
Mahab
,
M. M.
, and
De Roeck
,
G.
,
1999
, “
Damage Detection in Bridges Using Modal Curvatures: Application to a Real Crack Scenario
,”
J. Sound Vib.
,
226
(
2
), pp.
217
235
.
21.
Cao
,
M. S.
, and
Qiao
,
P. Z.
,
2009
, “
Novel Laplacian Scheme and Multiresolution Modal Curvatures for Structural Damage Identification
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
1223
1242
.
22.
Chandrashekhar
,
M.
, and
Ganguli
,
R.
,
2009
, “
Damage Assessment of Structures With Uncertainty by Using Mode Shape Curvatures and Fuzzy Logic
,”
J. Sound Vib.
,
326
(
3–5
), pp.
939
957
.
23.
Ratcliffe
,
C. P.
,
2000
, “
A Frequency and Curvature Based Experimental Method for Locating Damage in Structures
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
324
329
.
24.
Sung
,
S. H.
,
Jung
,
H. J.
, and
Jung
,
H. Y.
,
2013
, “
Damage Detection for Beam-Like Structures Using the Normalized Curvature of a Uniform Load Surface
,”
J. Sound Vib.
,
332
(
6
), pp.
1501
1519
.
25.
Shi
,
Z. Y.
,
Law
,
S. S.
, and
Zhang
,
L. M.
,
1998
, “
Structural Damage Localization From Modal Strain Energy Change
,”
J. Sound Vib.
,
218
(
5
), pp.
825
844
.
26.
Sazonov
,
E.
, and
Klinkhachorn
,
P.
,
2005
, “
Optimal Spatial Sampling Interval for Damage Detection by Curvature or Strain Energy Mode Shapes
,”
J. Sound Vib.
,
285
(
4–5
), pp.
783
801
.
27.
Qiao
,
P. Z.
,
Lestari
,
W.
,
Shah
,
M. G.
, and
Wang
,
J. L.
,
2007
, “
Dynamics-Based Damage Detection of Composite Laminated Beams Using Contact and Noncontact Measurement Systems
,”
J. Compos. Mater.
,
41
(
10
), pp.
1217
1251
.
28.
Liew
,
K. M.
, and
Wang
,
Q.
,
1998
, “
Application of Wavelet Theory for Crack Identification in Structures
,”
J. Eng. Mech.
,
124
(
2
), pp.
152
157
.
29.
Douka
,
E.
,
Loutridis
,
S.
, and
Trochidis
,
A.
,
2003
, “
Crack Identification in Beams Using Wavelet Analysis
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3557
3569
.
30.
Rucka
,
M.
, and
Wilde
,
K.
,
2006
, “
Application of Continuous Wavelet Transform in Vibration Based Damage Detection Method for Beams and Plates
,”
J. Sound Vib.
,
297
(
3–5
), pp.
536
550
.
31.
Kim
,
H.
, and
Melhem
,
H.
,
2014
, “
Damage Detection of Structures by Wavelet Analysis
,”
Eng. Struct.
,
26
(
3
), pp.
347
362
.
32.
Cao
,
M. S.
, and
Qiao
,
P. Z.
,
2008
, “
Integrated Wavelet Transform and Its Application to Vibration Mode Sharps for the Damage Detection of Beam-Type Structures
,”
Smart Mater. Struct.
,
17
(
5
), p.
055014
.
33.
Jiang
,
X.
,
Ma
,
Z. G. J.
, and
Ren
,
W. X.
,
2012
, “
Crack Detection From Slope of the Mode Shape Using Complex Continuous Wavelet Transform
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
27
(
3
), pp.
187
201
.
34.
Lotfollahi-Yaghin
,
M. A.
, and
Koohdaragh
,
M.
,
2011
, “
Examining the Function of Wavelet Packet Transform (WPT) and Continuous Wavelet Transform (CWT) in Recognizing the Crack Specification
,”
KSCE J. Civ. Eng.
,
15
(
3
), pp.
497
506
.
35.
Cao
,
M. S.
, and
Qiao
,
P. Z.
,
2009
, “
On the Wavelet-Fractal Nonlinear Damage Diagnosis of Mechanical Systems
,”
Smart Mater. Struct.
,
18
(
8
), p.
085022
.
36.
Bai
,
R. B.
,
Cao
,
M. S.
,
Su
,
Z. Q.
,
Ostachowicz
,
W.
, and
Xu
,
H.
,
2012
, “
Fractal Dimension Analysis of Higher-Order Mode Shapes for Damage Identification of Beam Structures
,”
Math. Probl. Eng.
,
2012
, p.
454568
.
37.
Bai
,
R. B.
,
Ostachowicz
,
W.
,
Cao
,
M. S.
, and
Su
,
Z.
,
2014
, “
Crack Detection in Beams in Noisy Conditions Using Scale Fractal Dimension Analysis of Mode Shapes
,”
Smart Mater. Struct.
,
23
(
6
), p.
065014
.
38.
Qiao
,
P. Z.
, and
Cao
,
M. S.
,
2008
, “
Waveform Fractal Dimension for Mode Shape-Based Damage Identification of Beam-Type Structures
,”
Int. J. Solids Struct.
,
45
(
22–23
), pp.
5946
5961
.
39.
An
,
Y. F.
, and
Ou
,
J. P.
,
2012
, “
Experimental and Numerical Studies on Damage Localization of Simply Supported Beams Based on Curvature Difference Probability Method of Waveform Fractal Dimension
,”
J. Intell. Mater. Syst. Struct.
,
23
(
4
), pp.
415
426
.
40.
Cao
,
M. S.
,
Ostachowicz
,
W.
,
Bai
,
R. B.
, and
Radzieski
,
M.
,
2013
, “
Fractal Mechanism for Characterizing Singularity of Mode Shape for Damage Detection
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221906
.
41.
Lee
,
E.
, and
Eun
,
H.
,
2015
, “
Damage Detection of Steel Beam Using Frequency Response Function Measurement Data and Fractal Dimension
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
034503
.
42.
Pawar
,
M. P.
, and
Ganguli
,
R.
,
2005
, “
Modeling Multi-Layer Matrix Cracking in Thin Walled Composite Rotor Blades
,”
J. Am. Helicopter Soc.
,
50
(
4
), pp.
354
366
.
43.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
, 5th ed.,
Wiley
,
New York
.
44.
Bhagat
,
M.
, and
Ganguli
,
R.
,
2014
, “
Spatial Fourier Analysis of a Free-Free Beam for Structural Damage Detection
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
15
(
4
), pp.
356
371
.
45.
Xu
,
H.
,
Cheng
,
L.
,
Su
,
Z. Q.
, and
Guyader
,
J. L.
,
2013
, “
Damage Visualization Based on Local Dynamic Perturbation: Theory and Application to Characterization of Multi-Damage in a Plane Structure
,”
J. Sound Vib.
,
332
(
14
), pp.
3438
3462
.
46.
Xu
,
H.
,
Cheng
,
L.
, and
Su
,
Z. Q.
,
2013
, “
Suppressing Influence of Measurement Noise on Vibration-Based Damage Detection Involving Higher-Order Derivatives
,”
Adv. Struct. Eng.
,
16
(
1
), pp.
233
244
.
47.
Mallat
,
S.
,
2008
,
A Wavelet Tour of Signal Processing
, 3rd ed.,
Academic Press
,
San Diego, CA
.
48.
Cao
,
M. S.
,
Cheng
,
L.
,
Su
,
Z. Q.
, and
Xu
,
H.
,
2012
, “
A Multi-Scale Pseudo-Force Model in Wavelet Domain for Identification of Damage in Structural Components
,”
Mech. Syst. Signal Process.
,
28
, pp.
638
659
.
49.
Cao
,
M. S.
,
Su
,
Z. Q.
,
Cheng
,
L.
, and
Xu
,
H.
,
2013
, “
A Multi-Scale Pseudo-Force Model for Characterization of Damage in Beam Components With Unknown Material and Structural Parameters
,”
J. Sound Vib.
,
332
(
21
), pp.
5566
5583
.
50.
Lang
,
G. F.
, and
Snyder
,
D.
,
2001
, “
Understanding the Physics of Electrodynamic Shaker Performance
,”
Sound and Vib.
,
35
(
10
), pp.
24
33
.
You do not currently have access to this content.