The phenomenon of near-field concentration of sound wave plays an important role in harnessing of sound wave in underwater sonar or similar devices, where high pressure field is required. Material parameters for the metamaterial-assisted acoustic concentrators with arbitrary N-sided regular polygonal cross section are derived based on coordination transformation approach. Acoustic intensity enhancement of the concentrator has been shown by full-wave simulation. All theoretical and numerical results validate the generality and effectiveness of the proposed designing method.

References

1.
Leonhardt
,
U.
, 2006, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.
2.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
, 2006, “
Controlling Electromagnetic Fields
,”
Science
,
312
(5781), pp.
1780
1782
.
3.
Luo
,
Y.
,
Zhang
,
J.
,
Ran
,
L.
,
Chen
,
H.
, and
Kong
,
J. A.
, 2008, “
Controlling the Emission of Electromagnetic Source
,”
Prog. Electromagn. Res. Symp.
,
4
(
7
), pp.
795
800
.
4.
Yao
,
S.
Zhou
,
X.
, and
Hu
,
G.
, 2008, “
Experimental Study on Negative Effective Mass in a 1D Mass-Spring System
,”
New J. Phys.
,
10
(
4
), p.
043020
.
5.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
, 2010, “
Composite Acoustic Medium With Simultaneously Negative Density and Modulus
,”
Phys. Rev. Lett.
,
104
(
5
), p.
054301
.
6.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
, 2006, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nature Mater.
,
5
(
6
), pp.
452
456
.
7.
Baz
,
A. M.
, 2010, “
An Active Acoustic Metamaterial With Tunable Effective Density
,”
J. Vibr. Acoust.
,
132
(
4
), p.
041011
.
8.
Chen
,
H.
, and
Chan
,
C. T.
, 2007, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
9.
Yang
,
J. J.
,
Huang
,
M.
,
Yang
,
C. F.
,
Peng
,
J. H.
, and
Chang
,
J.
, 2010, “
An External Acoustic Cloak With N-Sided Regular Polygonal Cross Section Based on Complementary Medium
,”
Comput. Mater. Sci.
,
49
(
1
), pp.
9
14
.
10.
Andrew
,
N. N.
, 2009, “
Acoustic Metafluids
,”
J. Acoust. Soc. Am.
,
125
(
2
), pp.
839
849
.
11.
Guenneau
,
S.
,
Movchan
,
A.
,
Pétursson
,
G.
, and
Ramakrishna
,
S. A.
, 2007, “
Acoustic Metamaterials for Sound Focusing and Confinement
,”
New J. Phys.
,
9
(
11
), p.
399
.
12.
Chen
,
H. Y.
,
Yang
,
J.
,
Zi
,
J.
, and
Chan
,
C. T.
, 2009, “
Transformation Media for Linear Liquid Surface Waves
,”
Europhys. Lett.
,
85
(
2
), p.
24004
.
13.
Yang
,
T.
,
Cao
,
R. F.
,
Luo
,
X. D.
, and
Ma
,
H. R.
, 2009, “
Acoustic Superscatterer and Its Multilayer Realization
,”
Appl. Phys. A: Mater. Sci. Process.
,
99
(
4
), pp.
843
847
.
14.
Chen
,
H.
, and
Chan
,
C. T.
, 2010, “
Acoustic Cloaking and Transformation Acoustics
,”
J. Phys. D: Appl. Phys.
,
43
(
11
), p.
113001
.
15.
Lin
,
S.
, 2009, “
Study on the Step-Type Circular Ring Ultrasonic Concentrator in Radial Vibration
,”
Ultrasonics
,
49
(
2
), pp.
206
211
.
16.
Nakamura
,
T.
,
Sato
,
Y.
,
Kamakura
,
T.
, and
Anada
,
T.
, 2004, “
Sound Pressure Fields Focused Using Biconcave Acoustic Lens for Normal Incidence
,”
Jpn. J. Appl. Phys.
,
43
(
1
), pp.
3163
3168
.
17.
Li
,
J.
,
Fok
,
L.
,
Yin
,
X.
,
Bartal
,
G.
, and
Zhang
,
X.
, 2009, “
Experimental Demonstration of an Acoustic Magnifying Hyperlens
,”
Nature Mater.
,
8
(
12
), pp.
931
934
.
18.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
, 2009, “
Acoustic Metamaterial With Negative Density
,”
Phys. Lett. A
,
373
(
48
), pp.
4464
4469
.
19.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
, 2009, “
Acoustic Metamaterial With Negative Modulus
,”
J. Phys.: Condens. Matter
,
21
(
17
), p.
175704
.
You do not currently have access to this content.