Extensive efforts are being exerted to develop various types of acoustic metamaterials to effectively control the flow of acoustical energy through these materials. However, all these efforts are focused on passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of one-dimensional acoustic metamaterials with tunable effective densities in an attempt to enable the adaptation to varying external environment. More importantly, the active metamaterials can be tailored to have increasing or decreasing variation of the material properties along and across the material volume. With such unique capabilities, physically realizable acoustic cloaks can be achieved and objects treated with these active metamaterials can become acoustically invisible. The theoretical analysis of this class of active acoustic metamaterials is presented and the theoretical predictions are determined for an array of fluid cavities separated by piezoelectric boundaries. These boundaries control the stiffness of the individual cavity and in turn its dynamical density. Various control strategies are considered to achieve different spectral and spatial control of the density of this class of acoustic metamaterials. A natural extension of this work is to include active control capabilities to tailor the bulk modulus distribution of the metamaterial in order to build practical configurations of acoustic cloaks.

1.
Lapine
,
M.
, 2007, “
The Age of Metamaterials
,”
Metamaterials
1873-1988,
1
, p.
1
.
2.
Shamonina
,
E.
, and
Solymar
,
L.
, 2007, “
Metamaterials: How the Subject Started
,”
Metamaterials
1873-1988,
1
, p.
12
18
.
3.
Gil
,
M.
,
Bonache
,
J.
, and
Martín
,
F.
, 2008, “
Metamaterial Filters: A Review
,”
Metamaterials
1873-1988,
2
, pp.
186
197
.
4.
Milton
,
G. W.
,
Briane
,
M.
, and
Willis
,
J. R.
, 2006, “
On Cloaking for Elasticity and Physical Equations With a Transformation Invariant Form
,”
New J. Phys.
1367-2630,
8
, p.
248
.
5.
Cummer
,
S. A.
, and
Schurig
,
D.
, 2007, “
One Path to Acoustic Cloaking
,”
New J. Phys.
1367-2630,
9
, p.
45
.
6.
Cummer
,
S. A.
,
Rahm
,
M.
, and
Schurig
,
D.
, 2008a, “
Material Parameters and Vector Scaling in Transformation Acoustics
,”
New J. Phys.
1367-2630,
10
, p.
115025
.
7.
Norris
,
A. N.
, 2008, “
Acoustic Cloaking Theory
,”
Proc. R. Soc., Math. Phys. Eng. Sci.
,
464
(
2097
), pp.
2411
2434
.
8.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
, 2007, “
Acoustic Metamaterials for New Two Dimensional Sonic Devices
,”
New J. Phys.
1367-2630,
9
, p.
323
.
9.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
, 2008, “
Acoustic Cloaking in Two Dimensions: A Feasible Approach
,”
New J. Phys.
1367-2630,
10
, p.
063015
.
10.
Popa
,
B. I.
, and
Cummer
,
S.
, 2009, “
Cloaking With Optimized Homogenous Anistropic Layers
,”
Phys. Rev. A
1050-2947,
79
, p.
023806
.
11.
Cheng
,
Y.
,
Yang
,
F.
,
Xu
,
J. Y.
, and
Liu
,
X. J.
, 2008, “
A Multilayer Structured Acoustic Cloak With Homogeneous Isotropic Materials
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
151913
.
12.
Cheng
,
Y.
,
Xu
,
J. Y.
, and
Liu
,
X. J.
, 2008, “
One-Dimensional Structured Ultrasonic Metamaterials With Simultaneously Negative Dynamic Density and Modulus
,”
Phys. Rev. B
0163-1829,
77
, p.
045134
.
13.
Cheng
,
Y.
, and
Liu
,
X. J.
, 2009, “
“Three Dimensional Multilayered Acoustic Cloak With Homogeneous Isotropic Materials
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
94
(
1
), pp.
25
30
.
14.
Chen
,
H. -Y.
,
Yang
,
T.
,
Luo
,
X. -D.
, and
Ma
,
H. -R.
, 2008, “
Impedance-Matched Reduced Acoustic Cloaking With Realizable Mass and Its Layered Design
,”
Chin. Phys. Lett.
0256-307X,
25
(
10
), pp.
3696
3699
.
15.
Cummer
,
S. A.
,
Popa
,
B. -I.
,
Schurig
,
D.
,
Smith
,
D. R.
,
Pendry
,
J.
,
Rahm
,
M.
, and
Starr
,
A.
, 2008b, “
Scattering Derivation of a 3D Acoustic Cloaking Shell
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
024301
.
16.
Pendry
,
J. B.
, and
Li
,
J.
, 2008, “
An Acoustic Metafluid: Realizing a Broadband Acoustic Cloak
,”
New J. Phys.
1367-2630,
10
, p.
115032
.
17.
Norris
,
A. N.
, 2009, “
Acoustic Metafluids
,”
J. Acoust. Soc. Am.
0001-4966,
125
(
2
), pp.
839
849
.
18.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
, 2009a, “
Negative Effective Density in an Acoustic Metamaterial
,” arXiv:cond-mat/0812.2954v3.
19.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
, 2009b, “
Reverse Doppler Effect of Sound
,” arXiv:cond-mat/0901.2772v2.
20.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
, 2008, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
1367-2630,
10
, p.
043020
.
21.
Kinsler
,
L.
,
Frey
,
A.
,
Coppens
,
A.
, and
Sanders
,
J.
, 2000,
Fundamentals of Acoustics
, 4th ed.,
Wiley
,
New York
.
22.
Blauert
,
J.
, and
Xiang
,
N.
, 2008,
Acoustics for Engineers
,
Springer-Verlag
,
Berlin
.
23.
ANSI/IEEE
, 1987, “
American National Standards/Institute of Electrical and Electronics Engineers “Standard on Piezoelectricity”
,”
ANSI/IEEE STD:176-1987
,
IEEE
,
New York
.
24.
Prasad
,
S.
,
Gallas
,
Q.
,
Horowitz
,
S.
,
Homeijer
,
B.
,
Sankar
,
B.
,
Cattafesta
,
L.
, and
Sheplak
,
M.
, 2006, “
Analytical Electroacoustic Model of a Piezoelectric Composite Circular Plate
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2311
2318
.
You do not currently have access to this content.