The paper considers the problem of suppressing the free vibration, induced by nonzero initial conditions, in a flexible system governed by the wave equation. First an exact response of the system, with general linear boundary conditions, is derived in terms of propagating waves that are reflected from the boundaries. The solution is explicit and with clear physical interpretation. The general expressions for the response are then used to investigate the behavior of the system under control with the absolute vibration suppression controller, which was originally designed for tracking control. It is shown that the vibration suppression properties of this controller apply also to nonzero initial conditions. In cases where the load end is free or contains only damping, the vibration stops completely in finite time and if it contains only inertia and damping it decays exponentially without vibration.

1.
Balas
,
M. J.
, 1978, “
Feedback Control of Flexible Systems
,”
IEEE Trans. Autom. Control
0018-9286,
23
(
4
), pp.
673
679
.
2.
Singh
,
T.
, 2002, “
Minimax Design of Robust Controllers for Flexible Systems
,”
J. Guid. Control Dyn.
0731-5090,
25
(
5
), pp.
868
875
.
3.
Bernstein
,
D. S.
, and
Hyland
,
D. C.
, 1985, “
The Optimal Projection/Maximum Entropy Approach to Designing Low-Order, Robust Controllers for Flexible Structures
,”
Proceedings of IEEE Conference on Decision and Control
, Fort Lauderdale, FL, pp.
745
752
.
4.
Toker
,
O.
, and
Ozbay
,
H.
, 1995, “
H-Infinity Optimal and Suboptimal Controllers for Infinite Dimensional SISO Plants
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
751
755
.
5.
Silverberg
,
L.
, 1986, “
Uniform Damping Control of Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
9
, pp.
221
227
.
6.
Bupp
,
R. T.
,
Bernstein
,
D. S.
,
Chellaboina
,
V.
, and
Haddad
,
W. M.
, 2000, “
Resetting Virtual Absorbers for Control
,”
J. Vib. Control
1077-5463,
6
, pp.
61
83
.
7.
Raskin
,
N.
, and
Halevi
,
Y.
, 2001, “
Rate Feedback Control of Free-Free Uniform Flexible Rod
,”
J. Guid. Control Dyn.
0731-5090,
24
, pp.
1037
1040
.
8.
Halevi
,
Y.
, 2005, “
Control of Flexible Structures Governed by the Wave Equation Using Infinite Dimensional Transfer Functions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
579
588
.
9.
Halevi
,
Y.
, and
Wagner-Nachshoni
,
C.
, 2006, “
Transfer Function Modeling of Multi-Link Flexible Structures
,”
J. Sound Vib.
0022-460X,
296
, pp.
73
90
.
10.
Peled
,
I.
, and
Halevi
,
Y.
, 2008, “
Robust Absolute Vibration Suppression Controller
,”
Proceedings of the Ninth Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA)
, Haifa, Israel.
11.
Matsuda
,
K.
,
Kanemitsu
,
Y.
, and
Kijimoto
,
S.
, 1998, “
A Wave-Based Controller Design for General Flexible Structures
,”
J. Sound Vib.
0022-460X,
216
(
2
), pp.
269
279
.
12.
von Flotow
,
A. H.
, 1986, “
Disturbance Propagation in Structural Networks
,”
J. Sound Vib.
0022-460X,
106
, pp.
433
450
.
13.
O’Connor
,
W. J.
, 2006, “
Wave-Echo Control of Lumped Flexible Systems
,”
J. Sound Vib.
0022-460X,
298
, pp.
1001
1018
.
14.
Wie
,
B.
, 1981, “
On Modeling and Control of Flexible Space Structures
,” Ph.D. dissertation, Department of Aeronautics and Astronautics, Stanford University.
15.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
, 1986, “
Free Vibration of Combined Dynamical Systems
,”
J. Eng. Mech.
0733-9399,
112
(
1
), pp.
1
13
.
16.
Yang
,
B.
, and
Tan
,
C. A.
, 1991, “
Transfer Functions of One Dimensional Distributed Parameter Systems
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
1009
1014
.
17.
Inman
,
D. J.
, 1994,
Engineering Vibration
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Selvadurai
,
A. P. S.
, 2000,
Partial Differential Equations in Mechanics 1
,
Springer
,
Germany
.
20.
Myint-U
,
T.
, and
Debnath
,
L.
, 1987,
Partial Differential Equations for Scientists and Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Knobel
,
R.
, 2000,
An Introduction to the Mathematical Theory of Waves
,
American Mathematical Society
,
Providence
.
22.
Schiff
,
J. L.
, 1999,
The Laplace Transform—Theory and Applications
,
Springer
,
New York
.
23.
Mathews
,
J. H.
, and
Howell
,
R. W.
, 2006,
Complex Analysis for Mathematics and Engineering
,
Jones and Bartlett
,
Canada
.
You do not currently have access to this content.