In comparison with the transverse vibrations of rectangular plates, far less attention has been paid to the in-plane vibrations even though they may play an equally important role in affecting the vibrations and power flows in a built-up structure. In this paper, a generalized Fourier method is presented for the in-plane vibration analysis of rectangular plates with any number of elastic point supports along the edges. Displacement constraints or rigid point supports can be considered as the special case when the stiffnesses of the supporting springs tend to infinity. In the current solution, each of the in-plane displacement components is expressed as a 2D Fourier series plus four auxiliary functions in the form of the product of a polynomial times a Fourier cosine series. These auxiliary functions are introduced to ensure and improve the convergence of the Fourier series solution by eliminating all the discontinuities potentially associated with the original displacements and their partial derivatives along the edges when they are periodically extended onto the entire plane as mathematically implied by the Fourier series representation. This analytical solution is exact in the sense that it explicitly satisfies, to any specified accuracy, both the governing equations and the boundary conditions. Numerical examples are given about the in-plane modes of rectangular plates with different edge supports. It appears that these modal data are presented for the first time in literature, and may be used as a benchmark to evaluate other solution methodologies. Some subtleties are discussed about corner support arrangements.
Skip Nav Destination
e-mail: zgliu56@yahoo.com.cn
Article navigation
June 2010
Research Papers
Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges
Jingtao Du,
Jingtao Du
College of Power and Energy Engineering,
Harbin Engineering University
, Harbin 150001, P. R. China
Search for other works by this author on:
Zhigang Liu,
Zhigang Liu
College of Power and Energy Engineering,
e-mail: zgliu56@yahoo.com.cn
Harbin Engineering University
, Harbin 150001, P. R. China
Search for other works by this author on:
Wen L. Li,
Wen L. Li
Department of Mechanical Engineering,
Wayne State University
, 5050 Anthony Wayne Drive, Detroit, MI 48202-3902
Search for other works by this author on:
Xuefeng Zhang,
Xuefeng Zhang
Department of Mechanical Engineering,
Wayne State University
, 5050 Anthony Wayne Drive, Detroit, MI 48202-3902
Search for other works by this author on:
Wanyou Li
Wanyou Li
College of Power and Energy Engineering,
Harbin Engineering University
, Harbin 150001, P. R. China
Search for other works by this author on:
Jingtao Du
College of Power and Energy Engineering,
Harbin Engineering University
, Harbin 150001, P. R. China
Zhigang Liu
College of Power and Energy Engineering,
Harbin Engineering University
, Harbin 150001, P. R. Chinae-mail: zgliu56@yahoo.com.cn
Wen L. Li
Department of Mechanical Engineering,
Wayne State University
, 5050 Anthony Wayne Drive, Detroit, MI 48202-3902
Xuefeng Zhang
Department of Mechanical Engineering,
Wayne State University
, 5050 Anthony Wayne Drive, Detroit, MI 48202-3902
Wanyou Li
College of Power and Energy Engineering,
Harbin Engineering University
, Harbin 150001, P. R. ChinaJ. Vib. Acoust. Jun 2010, 132(3): 031002 (11 pages)
Published Online: April 14, 2010
Article history
Received:
January 20, 2009
Revised:
June 25, 2009
Online:
April 14, 2010
Published:
April 14, 2010
Citation
Du, J., Liu, Z., Li, W. L., Zhang, X., and Li, W. (April 14, 2010). "Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges." ASME. J. Vib. Acoust. June 2010; 132(3): 031002. https://doi.org/10.1115/1.4000777
Download citation file:
Get Email Alerts
Numerical Analysis of the Tread Grooves’ Acoustic Resonances for the Investigation of Tire Noise
J. Vib. Acoust (August 2024)
Related Articles
An Exact Fourier Series Method for the Vibration Analysis of Multispan Beam Systems
J. Comput. Nonlinear Dynam (April,2009)
Three-Dimensional Vibration Analysis of Rectangular Plates With Mixed Boundary Conditions
J. Appl. Mech (March,2005)
Trefftz Finite Element Method and Its Applications
Appl. Mech. Rev (September,2005)
Vibration Tailoring of a Polar Orthotropic Circular Plate With a Translational Spring
J. Appl. Mech (May,2008)
Related Proceedings Papers
Related Chapters
Three Dimensional Vibration Analysis of Functionally Graded Super-Elliptical Plates
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Vibration of Plates
Design of Plate and Shell Structures
A New Exact Analytical Approach for In-Plane and Transverse Vibration of Thick Laminated Plates
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3