Standard methods for the numerical calculation of fractional derivatives can be slow and memory consuming due to the nonlocality of the differential operators. Yuan and Agrawal (2002, “A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives,” ASME J. Vibr. Acoust., 124, pp. 321–324) have proposed a more efficient approach for operators whose order is between 0 and 1 that differs substantially from the traditional concepts. It seems, however, that the accuracy of the results can be poor. We modify the approach, adapting it better to the properties of the problem, and show that this leads to a significantly improved quality. Our idea also works for operators of order greater than 1.

1.
Bagley
,
R. L.
, and
Calico
,
R. A.
, 1991, “
Fractional Order State Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
0731-5090,
14
, pp.
304
311
.
2.
Caputo
,
M.
, 1967, “
Linear Models of Dissipation Whose Q is Almost Frequency Independent—II
,”
Geophys. J. R. Astron. Soc.
0016-8009,
13
, pp.
529
539
.
3.
Gorenflo
,
R.
, and
Mainardi
,
F.
, 1997, “
Fractional Calculus: Integral and Differential Equations of Fractional Order
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
A.
Carpinteri
and
F.
Mainardi
, eds.,
Springer
,
Wien
, pp.
223
276
.
4.
Lu
,
J.-F.
, and
Hanyga
,
A.
, 2005, “
Wave Field Simulation for Heterogeneous Porous Media With Singular Memory Drag Force
,”
J. Comput. Phys.
0021-9991,
208
, pp.
651
674
.
5.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego
.
6.
Diethelm
,
K.
, 1997, “
Generalized Compound Quadrature Formulae for Finite-Part Integrals
,”
IMA J. Numer. Anal.
0272-4979,
17
, pp.
479
493
.
7.
Elliott
,
D.
, 1993, “
An Asymptotic Analysis of Two Algorithms for Certain Hadamard Finite-Part Integrals
,”
IMA J. Numer. Anal.
0272-4979,
13
, pp.
445
462
.
8.
Lubich
,
C.
, 1986, “
Discretized Fractional Calculus
,”
SIAM J. Math. Anal.
0036-1410,
17
, pp.
704
719
.
9.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
, 2004, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
1017-1398,
36
, pp.
31
52
.
10.
Liang
,
J.
,
Chen
,
Y.
, and
Guo
,
B.-Z.
, 2004, “
A Hybrid Symbolic-Numerical Simulation Method for Some Typical Boundary Control Problems
,”
Simulation
0037-5497,
80
, pp.
635
643
.
11.
Liang
,
J.
, and
Chen
,
Y.
, 2006, “
Hybrid Symbolic and Numerical Simulation Studies of Time-Fractional Order Wave-Diffusion Systems
,”
Int. J. Control
0020-7179,
79
, pp.
1462
1470
.
12.
Yuan
,
L.
, and
Agrawal
,
O. P.
, 2002, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
321
324
.
13.
Schmidt
,
A.
, and
Gaul
,
L.
, 2006, “
On a Critique of a Numerical Scheme for the Calculation of Fractionally Damped Dynamical Systems
,”
Mech. Res. Commun.
0093-6413,
33
, pp.
99
107
.
14.
Szegő
,
G.
, 1975,
Orthogonal Polynomials
, 4th ed.,
American Mathematical Society
,
Providence
.
15.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II
, 2nd revised ed.,
Springer
,
Berlin
.
16.
Gautschi
,
W.
, 1991, “
Quadrature Formulae on Half-Infinite Intervals
,”
BIT
0006-3835,
31
, pp.
438
446
.
17.
Gautschi
,
W.
, 1994, “
Algorithm 726: ORTHPOL—A Package of Routines for Generating Orthogonal Polynomials and Gauss-Type Quadrature Rules
,”
ACM Trans. Math. Softw.
0098-3500,
20
, pp.
21
62
.
You do not currently have access to this content.