The effect of Coulomb friction on the nonlinear dynamics of a van der Pol oscillator is presented. A map from the magnitude of a peak to that of the succeeding valley in the time history is analytically described by considering both the exponential growth due to negative viscous damping and the switching condition due to Coulomb friction, which is a function of the sign of the velocity of the system. The steady states and their stability are clarified and the difference from those in the case without Coulomb friction is revealed. The addition of Coulomb friction makes the trivial equilibrium, which is an unstable focus in the system without friction, into a locally asymptotically stable equilibrium set. The branch of stable nontrivial steady states is not bifurcated from the trivial steady state by the effect of Coulomb friction and is different from the branch in the case without Coulomb friction, which is bifurcated from the trivial steady state through Hopf bifurcation. Furthermore, experiments are conducted and the theoretically predicted dynamics due to Coulomb friction is confirmed.

1.
Babitsky
,
V. I.
, 1995, “
Autoresonant Mechatronic Systems
,”
Mechatronics
0957-4158,
5
, pp.
483
495
.
2.
Kurita
,
Y.
, and
Muragishi
,
Y.
, 1996, “
Self-Excited Driving of Resonance-Type Vibratory Machine by Vibration Quantity Feedback
,”
Transactions of the Japan Society of Mechanical Engineers, Series C
,
62
, pp.
35
40
, in Japanese.
3.
Babitsky
,
V. I.
,
Astashev
,
V. K.
, and
Kalashnikov
,
A. N.
, 2004, “
Autoresonant Control of Nonlinear Mode in Ultrasonic Transducer for Machining Applications
,”
Ultrasonics
0041-624X,
42
, pp.
29
35
.
4.
Peigne
,
G.
,
Kanmev
,
E.
,
Brissaud
,
D.
, and
Gouskov
,
A.
, 2005, “
Self-Excited Vibratory Drilling
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
219
, pp.
73
85
.
5.
Astashev
,
V.
,
Babitsky
,
V.
, and
Kolovsky
,
M.
, 2000,
Dynamics and Control of Machines
,
Springer
,
New York
.
6.
Binning
,
G.
,
Quate
,
C. E.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
, pp.
930
933
.
7.
Gracia
,
R.
, and
Perez
,
R.
, 2002, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
0167-5729,
47
, pp.
197
301
.
8.
Albrecht
,
T. R.
,
Grutter
,
P.
,
Horne
,
D.
, and
Ruger
,
D.
, 1991, “
Frequency Modulation Detection Using High-Q Cantilevers for Enhanced Force Microscope Sensitivity
,”
J. Appl. Phys.
0021-8979,
69
, pp.
668
673
.
9.
Okajima
,
T.
,
Sekiguchi
,
H.
,
Arakawa
,
H.
, and
Ikai
,
A.
, 2003, “
Self-Oscillation Technique for AFM in Liquids
,”
Appl. Surf. Sci.
0169-4332,
210
, pp.
68
72
.
10.
Yabuno
,
H.
,
Kaneko
,
H.
,
Kuroda
,
M.
, and
Kobayashi
,
T.
, 2008, “
van der Pol Type Self-Excited Micro-Cantilever Probe of Atomic Force Microscopy
,”
Nonlinear Dyn.
0924-090X, online.
11.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1983,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
12.
Maccari
,
A.
, 1998, “
Approximate Solution of a Class of Nonlinear Oscillators in Resonance With Periodic Excitation
,”
Nonlinear Dyn.
0924-090X,
15
, pp.
329
343
.
13.
Schenk-Hoppe
,
K. R.
, 1996, “
Bifurcation Scenarios of the Noisy Duffing van der Pol Oscillator
,”
Nonlinear Dyn.
0924-090X,
11
, pp.
255
274
.
14.
Xu
,
J.
, and
Chung
,
K. W.
, 2003, “
Effects of Time Delayed Position Feedback on a van der Pol-Duffing Oscillator
,”
Physica D
0167-2789,
180
, pp.
17
39
.
15.
Hramov
,
A. E.
,
Koronovskii
,
A. A.
,
Kurovskaya
,
M. K.
, and
Moskalenko
,
O. I.
, 2005, “
Synchronization of Spectral Components and Its Regularities in Chaotic Dynamical Systems
,”
Phys. Rev. E
1063-651X,
71
, p.
056204
.
16.
Murali
,
K.
, and
Lakshmanan
,
M.
, 1993, “
Transmission of Signals by Synchronization in a Chaotic van der Pol-Duffing Oscillator
,”
Phys. Rev. E
1063-651X,
48
, pp.
R1624
R1626
.
17.
Qiu
,
S.
, and
Filanovsky
,
I. M.
, 1987, “
Periodic Solutions of the van der Pol Equation With Moderate Values of Damping Coefficient
,”
IEEE Trans. Circuits Syst.
0098-4094,
AS-34
, pp.
913
918
.
18.
El-Abasy
,
E. M.
, 1985, “
On the Period Solution of the van der Pol Oscillator With Large Damping
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
100
, pp.
103
106
.
19.
Leine
,
R. I.
,
Van Campen
,
D. H.
, and
Van De Vrande
,
B. L.
, 2000, “
Bifurcations in Nonlinear Discontinuous Systems
,”
Nonlinear Dyn.
0924-090X,
23
, pp.
105
164
.
20.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 2004,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
Weinheim
.
21.
Van de Wouw
,
N.
, and
Leine
,
R. I.
, 2004, “
Attractivity of Equilibrium Sets of Systems With Dry Friction
,”
Nonlinear Dyn.
0924-090X,
35
, pp.
19
39
.
22.
van der Pol
,
B.
, 1927, “
On Relaxation-Oscillations
,”
Philos. Mag.
0031-8086,
3
, pp.
978
992
.
23.
Feeny
,
B. F.
, and
Liang
,
J. W.
, 1996, “
A Decrement Method for the Simultaneous Estimation of Coulomb and Viscous Friction
,”
J. Sound Vib.
0022-460X,
195
, pp.
149
154
.
24.
Glocker
,
C.
, 2001,
Set-Valued Force Laws: Dynamics of Non-Smooth Systems
, (Lecture Notes in Applied Mechanics),
Springer-Verlag
,
Berlin
, Vol.
1
.
25.
Leine
,
R. I.
, and
Nijmeijer
,
H.
, 2004,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
(Lecture Notes in Applied and Computational Mechanics),
Springer
,
Berlin
, Vol.
18
.
26.
Beards
,
C. F.
, 1981,
Vibration Analysis and Control System Dynamics
Wiley
,
New York
.
27.
Nayfeh
,
A. H.
, 1973,
Perturbation Methods
Wiley
,
New York
.
You do not currently have access to this content.