This paper is intended to point out the relationship among current time domain modal analysis methods by employing generalized eigenvalue decomposition. Ibrahim time domain (ITD), least-squares complex exponential (LSCE) and eigensystem realization algorithm (ERA) methods are reviewed and chosen to do the comparison. Reformulation to their original forms shows these three methods can all be attributed to a generalized eigenvalue problem with different matrix pairs. With this general format, we can see that single-input multioutput (SIMO) methods can easily be extended to multi-input multioutput (MIMO) cases by taking advantage of a generalized Hankel matrix or a generalized Toeplitz matrix.

1.
Mendes
,
M.
, and
Silva
,
J. M.
, 1997,
Theoretical and Experimental Modal Analysis
,
Research Studies Press
, Cambridge, UK.
2.
Brown
,
D. L.
,
Allemang
,
R. J.
,
Zimmerman
,
R.
, and
Mergeay
,
M.
, 1979, “
Parameter Estimation Techniques for Modal Analysis
,” SAE Technical Paper Series, 790221, pp.
15
24
.
3.
Ibrahim
,
S. R.
, and
Mikulcik
,
E. C.
, 1973, “
A Time Domain Modal Vibration Test Technique
,”
Shock Vib. Bull.
,
43
(
4
), pp.
21
37
.
4.
Ibrahim
,
S. R.
, and
Mikulcik
,
E. C.
, 1977, “
A Method for the Direct Identification of Vibration Parameters From the Free Response
,”
Shock Vib. Bull.
,
47
(
4
), pp.
183
198
.
5.
Ibrahim
,
S. R.
, 1978, “
Modal Confidence Factor in Vibration Testing
,”
Shock Vib. Bull.
,
48
(
1
), pp.
65
75
.
6.
Pappa
,
S. R.
, and
Ibrahim
,
S. R.
, 1981, “
A Parameter Study of the Ibrahim Time Domain Identification Algorithm
,”
Shock Vib. Bull.
,
51
(
3
), pp.
43
73
.
7.
Vold
,
H.
,
Kundrat
,
J.
,
Rocklin
,
G. T.
, and
Russel
,
R.
, 1982, “
A Multi-Input Modal Estimation Algorithm for Mini-Computers
,” SAE Technical Paper Series, 820194, pp.
828
841
.
8.
Juang
,
J. N.
, and
Pappa
,
R. S.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
0731-5090,
8
(
5
), pp.
620
627
.
9.
Juang
,
J. N.
, and
Pappa
,
R. S.
, 1986, “
Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm
,”
J. Guid. Control Dyn.
0731-5090,
9
(
3
), pp.
294
303
.
10.
Peeters
,
B.
, and
Roeck
,
G. D.
, 1999, “
Reference-Based Stochastic Subspace Identification for Output-Only Modal Analysis
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
6
), pp.
855
878
.
11.
Overschee
,
P. V.
, and
Moor
,
B. D.
, 1993, “
Subspace Algorithm for the Stochastic Identification Problem
,”
Automatica
0005-1098,
29
(
3
), pp.
649
660
.
12.
Benveniste
,
A.
, and
Fuchs
,
J. J.
, 1985, “
Single Sample Modal Identification of a Nonstationary Stochastic Process
,”
IEEE Trans. Autom. Control
0018-9286,
30
(
1
), pp.
66
74
.
13.
Allemang
,
R. J.
, and
Brown
,
D. L.
, 1998, “
A Unified Matrix Polynomial Approach to Modal Identification
,”
J. Sound Vib.
0022-460X,
211
(
3
), pp.
301
322
.
14.
Chelidze
,
D.
, and
Zhou
,
W.
, 2006, “
Smooth Orthogonal Decomposition Based Vibration Mode Identification
,”
J. Sound Vib.
0022-460X,
292
(
3-5
), pp.
461
476
.
15.
Tong
,
L.
,
Liu
,
R. W.
,
Soon
,
V. C.
, and
Huang
,
Y. F.
, 1991, “
Indeterminacy and Identifiability of Blind Identification
,”
IEEE Trans. Circuits Syst.
0098-4094,
38
(
5
), pp.
499
509
.
16.
Belouchrani
,
A.
,
Abed-Meraim
,
K.
,
Cardoso
,
J. F.
, and
Moulines
,
E.
, 1997, “
A Blind Source Separation Technique Using Second-Order Statistics
,”
IEEE Trans. Signal Process.
1053-587X,
45
(
2
), pp.
434
444
.
17.
Zhou
,
W.
, and
Chelidze
,
D.
, 2007, “
Blind Source Separation Based Vibration Mode Identification
,”
Mech. Syst. Signal Process.
0888-3270, doi: (to be published).
You do not currently have access to this content.