It is well known that there is degradation in the performance of a fixed parameter controller when the system parameters are subjected to a change. Conventional controllers can become even unstable, with these parametric uncertainties. This problem can be avoided by using robust and adaptive control design techniques. However, to obtain robust performance, it is desirable that the closed-loop poles of the perturbed structural system remain at prespecified locations for a range of system parameters. With the aim to obtain robust performance by manipulating the closed loop poles of the perturbed system, feasibility of the pole placement based controller design techniques is checked for active vibration control applications. The controllers based on the adaptive and robust pole placement method are implemented on smart structures. It was observed that the adaptive pole placement controllers are noise tolerant, but require high actuator voltages to maintain stability. However, robust pole placement controllers require comparatively small amplitude of control voltage to maintain stability, but are noise sensitive. It was realized that by using these techniques, robust stability and performance can be obtained for a moderate range of parametric uncertainties. However, the position of closed-loop poles should be judiciously chosen for both the control design strategies to maintain stability.

1.
Zeng
,
Y.
,
Araujo
,
R.
, and
Singh
,
S. N.
, 1999, “Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft,” Astronautica, 44(1), pp. 11–22.
2.
Youn
,
S. H.
,
Han
,
J. H.
, and
Lee
,
I.
, 2000, “
Neuro-Adaptive Vibration Control of Composite Beams Subjected to Sudden Delamination
,”
J. Sound Vib.
0022-460X,
238
(
2
), pp.
215
231
.
3.
Shaw
,
J.
, 2000, “
Adaptive Control for Sound and Vibration: A Comparative Study
,”
J. Sound Vib.
0022-460X,
235
(
4
), pp.
671
684
.
4.
Lee
,
Y. S.
, and
Eillot
,
S. J.
, 2001, “
Active Position Control of a Flexible Smart Beam Using Internal Model Control
,”
J. Sound Vib.
0022-460X,
242
(
5
), pp.
767
791
.
5.
Bai
,
M. R.
, 2002, “
Experimental Evaluation of Adaptive Predictive Control for Rotor Vibration Suppression
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
6
), pp.
895
901
.
6.
Rew
,
K. H.
, 2002, “
Multi-Modal Vibration Control Using Adaptive Positive Position Feedback
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
13
(
1
), pp.
13
22
.
7.
Lim
,
C. W.
,
Chung
,
T. Y.
, and
Moon
,
S. J.
, 2003, “
Adaptive Bang-Bang Control for the Vibration Control of Structures Under Earthquakes
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
(
13
), pp.
1977
1994
.
8.
Crassidis
,
J. L.
,
Baz
,
A.
, and
Wereley
,
N.
, 2000, “
H-Infinity Control of Active Constrained Layer Damping
,”
J. Vib. Control
1077-5463,
6
, pp.
113
136
.
9.
Sunar
,
M.
,
Hyder
,
S. J.
, and
Yilbas
,
B. S.
, 2001, “
Robust Design of Piezoelectric Actuators for Structural Control
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
46–47
), pp.
6257
6270
.
10.
Bai
,
M. R.
, and
Liu
,
W.
, 2002, “
Control Design of Active Vibration Isolation Using Mu-Synthesis
,”
J. Sound Vib.
0022-460X,
257
(
1
), pp.
157
175
.
11.
Wang
,
Z.
,
Zeng
,
H.
,
Ho
,
D. W. C.
, and
Unbehauen
,
H.
, 2002, “
Multi-Objective Control of a Four-Link Flexible Manipulator: A Robust H-Infinity Approach
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
, pp.
866
875
.
12.
Chang
,
W.
,
Gopinathan
,
S. V.
,
Vardan
,
V. V.
, and
Vardan
,
V. K.
, 2002, “
Design of Robust Vibration Controller for a Smart Pannel Using Finite Element Model
,”
J. Vibr. Acoust.
0739-3717,
124
, pp.
265
276
.
13.
Liu
,
T. X.
,
Hua
,
H. X.
, and
Zhang
,
Z.
, 2004, “
Robust Control of Plate Vibrations via Active Constrained Layer Damping
,”
Thin-Walled Struct.
0263-8231,
42
, pp.
427
448
.
14.
Xie
,
S. L.
,
Zhang
,
X. N.
, and
Zhang
,
J. H.
, 2004, “
H Infinity Robust Vibration Control of a Thin Plate Covered With a Controllable Constrained Damping Layer
,”
J. Vib. Control
1077-5463,
10
, pp.
115
133
.
15.
Yuan
,
J.
, 2004, “
Robust Vibration Control Based on Identified Models
,”
J. Sound Vib.
0022-460X,
269
, pp.
43
56
.
16.
Hu
,
Y. R.
, and
Ng
,
A.
, 2005, “
Active Robust Vibration Control of Flexible Structures
,”
J. Sound Vib.
0022-460X,
288
(
1–2
), pp.
43
56
.
17.
Tliba
,
S.
,
Abou-Kandil
,
H.
, and
Prieur
,
C.
, 2005, “
Active Vibration Damping of a Smart Flexible Structure Using Piezoelectric Transducers: H-Infinity Design and Experimental Results
,”
Proceedings of the 16th IFAC World Congress
,
Prague, Czech Republic
, July
4
8
.
18.
Reza Moheimani
,
S. O.
,
Vautier
,
J. G.
,
Bhikkaji
,
B.
, 2006, “
Experimental Implementation of Extended Multivariable Control on an Active Structure
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
3
), pp.
443
455
.
19.
Stavroulakisa
,
G. E.
,
Marinovac
,
D. G.
,
Hadjigeorgioud
,
E.
,
Foutsitzid
,
G.
, and
Baniotopoulose
,
C. C.
, 2006, “
Robust Active Control Against Wind-Induced Structural Vibrations
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
94
(
11
), pp.
895
907
.
20.
Chilali
,
M.
, and
Gahinet
,
P.
, 1996, “
H-Infinity Design With Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
3
), pp.
358
367
.
21.
Figueroa
,
J. L.
,
Ramagnoli
,
J. A.
, 1994, “
An Algorithm for Robust Pole Assignment via Polynomial Approach
,”
IEEE Trans. Autom. Control
0018-9286,
39
, pp.
831
835
.
22.
Keel
,
L. H.
,
Bhatacharya
,
S. P.
, and
Howze
,
J. O. W.
, 1988, “
Robust Control With Structured Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
133
(
1
), pp.
68
78
.
23.
Henrion
,
D.
,
Sebek
,
M.
, and
Kucera
,
V.
, 2003, “
Positive Polynomials and Robust Stabilization With Fixed-Order Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
7
), pp.
1178
1186
.
24.
Soh
,
Y. C.
,
Evans
,
R. J.
,
Petersen
,
I. R.
, and
Betz
,
R. E.
, 1987, “
Robust Pole Assignment
,”
Automatica
0005-1098,
23
(5), pp.
601
610
.
25.
Lozano
,
R.
, and
Zhao
,
X. H.
, 1994, “
Adaptive Pole Placement Without Excitation Probing Signals
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
1
), pp.
47
58
.
26.
Meirovitch
,
L.
, 1986,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York, NY
.
27.
Meirovitch
,
L.
, 1986,
Dynamics and Control of Structures
,
Wiley
,
Chichester, West Sussex, UK
.
28.
Buttler
,
R.
, and
Rao
,
V.
, 1996, “
A State Space Modeling and Control Method for Multivariable Smart Structural Systems
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
386
399
.
29.
Baz
,
A.
, and
Poh
,
S.
, 1988, “
Performance of Active Control System With Piezoelectric Actuators
,”
J. Sound Vib.
0022-460X,
126
(
2
), pp.
327
343
.
30.
Wellstead
,
P. E.
,
Prager
,
D.
, and
Zanker
,
P.
, 1979, “Pole Assignment Self Tuning Regulator,” Proc. IEE. Control Science, 126, pp. 781–87.
31.
Barmish
,
B. R.
, 1984, “
Invariance of Strict Hutwitz Property for Polynomials With Perturbed Coefficients
,”
IEEE Trans. Autom. Control
0018-9286,
29
(
10
), pp.
935
936
.
32.
Bialas
,
S.
, and
Garloff
,
J.
, 1985, “
Stability of Polynomials Under Coefficient Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
30
, pp.
310
312
.
33.
Bhattacharyya
,
S. P.
,
Chapellat
,
H.
, and
Keel
,
L. H.
, 1995,
Robust Control: The Parametric Approach
,
Prentice Hall Information and System Sciences
,
New York, NY
.
34.
Stevens Brain
,
L.
, and
Lewis
,
F. L.
, 2003
Aircraft Control and Simulations
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.