Semiactive vibration dampers offer an attractive compromise between the simplicity and fail safety of passive devices, and the weight, cost, and complexity of fully active systems. In addition, the dissipative nature of semiactive dampers ensures they always remain stable under closed loop control, unlike their fully active counterparts. However, undesirable limit cycle behavior remains a possibility, which is not always properly considered during the controller design. Smart fluids provide an elegant means to produce semiactive damping, since their resistance to flow can be directly controlled by the application of an electric or magnetic field. However, the nonlinear behavior of smart fluid dampers makes it difficult to design effective controllers, and so a wide variety of control strategies has been proposed in the literature. In general, this work has overlooked the possibility of undesirable limit cycle behavior under closed loop conditions. The aim of the present study is to demonstrate how the experimentally observed limit cycle behavior of smart dampers can be predicted and explained by appropriate nonlinear models. The study is based upon a previously developed feedback control strategy, but the techniques described are relevant to other forms of smart damper control.

1.
Simon
,
D.
and
Ahmadian
,
M.
, 2001, “
Vehicle Evaluation of the Performance of Magneto Rheological Dampers for Heavy Truck Suspensions
,”
J. Vibr. Acoust.
0739-3717,
123
, pp.
365
375
.
2.
Yoshida
,
O.
, and
Dyke
,
S. J.
, 2004, “
Seismic Control of a Nonlinear Benchmark Building Using Smart Dampers
,”
J. Eng. Mech.
0733-9399,
130
, pp.
386
392
.
3.
Stanway
,
R.
,
Sims
,
N. D.
, and
Johnson
,
A. R.
, 2000, “
Modelling and Control of an MR Vibration Isolator
,”
Smart Structures and Materials 2000: Damping and Isolation
, edited by
T. T.
Hyde
(
SPIE
,
Bellingham, WA
), Vol.
3989
, pp.
184
193
.
4.
Stanway
,
R.
, “
Smart Fluids—The Shock of the New
,” in
Materials World
, IOM Communications Ltd,
London
, 2002, pp.
10
12
.
5.
Choi
,
S. B.
,
Cheong
,
C. C.
,
Jung
,
J. M.
, and
Choi
,
Y. T.
, 1997, “
Position Control of an ER Valve-Cylinder System Via Neural Network Controller
,”
Mechatronics
0957-4158,
7
, pp.
37
52
.
6.
Morishita
,
S.
, and
Ura
,
T.
, 1993, “
ER Fluid Applications to Vibration Control Devices and an Adaptive Neural-Net Controller
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
4
, pp.
366
372
.
7.
Sims
,
N. D.
,
Holmes
,
N. J.
, and
Stanway
,
R.
, 2004, “
A Unified Modelling and Model Updating Procedure For Electrorheological and Magnetorheological Vibration Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
13
, pp.
100
121
.
8.
Nakano
,
M.
, and
Yonekawa
,
T.
, 1997, “
Active Damper Using Electrorheological Suspension and its Application to Vibration Isolation Control
,”
Noise Vib. Control Worldw.
0143-6481,
28
, p.
21
.
9.
Choi
,
S.-B.
,
Choi
,
Y. T.
,
Park
,
D. W.
, and
Lee
,
H. G. I.
, 1998, “
Robust Feedback Control of a Full-Car ER Suspension System
,”
Smart Structures and Materials 1998: Smart Structures and Integrated Systems
, edited by
M. E.
Regelbrugge
,
SPIE
,
Bellingham, WA
, Vol.
3329
, pp.
439
450
.
10.
Choi
,
Y.-T.
, and
Wereley
,
N. M.
, 2003, “
Vibration Control of a Landing Gear System Featuring Electrorheological/Magnetorheological Fluids
,”
J. Aircr.
0021-8669,
40
, pp.
432
439
.
11.
Kim
,
C.
, and
Ro
,
P. I.
, 1998, “
A Sliding Mode Controller For Vehicle Active Suspension Systems With Non-Linearities
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
212
, pp.
79
92
.
12.
Choi
,
S.-B.
,
Lee
,
H.-S.
, and
Park
,
Y.-P.
, 2002, “
H-Infinity Control Performance of a Full-Vehicle Suspension Featuring Magnetorheological Dampers
,”
Veh. Syst. Dyn.
0042-3114,
38
, pp.
341
360
.
13.
Jansen
,
L. M.
, and
Dyke
,
S. J.
, 2000, “
Semiactive Control Strategies For MR Dampers: Comparative Study
,”
J. Eng. Mech.
0733-9399,
126
, pp.
795
803
.
14.
Sims
,
N. D.
,
Stanway
,
R.
,
Peel
,
D. J.
,
Bullough
,
W. A.
, and
Johnson
,
A. R.
, 1999, “
Controllable Viscous Damping: An Experimental Study of an Electrorheological Long-Stroke Damper Under Proportional Feedback Control
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
601
615
.
15.
Sims
,
N. D.
, 2000, “
Modelling and Control of an Electrorheological Long-Stroke Vibration Damper
,” Ph.D. thesis, Department of Mechanical Engineering, The University of Sheffield.
16.
Dyke
,
S. J.
, 1999, “
Stability and Performance of Controlled Civil Engineering Structures Using MR Dampers
,”
Proceedings of the 1999 Structures Congress Structural Engineering in the 21st Century
,’ ASME, pp.
870
873
.
17.
Shukla
,
A.
, and
VanKuren
,
M. B.
, 2004, “
Nonlinear Dynamics of a Magnetorheological-Fluid-Based Active Suspension System for a Neonatal Transport
,”
Smart Structures and Materials 2004: Passive Damping and Isolation
, edited by
K.-W.
Wang
,
SPIE
,
Bellingham, WA
, Vol.
5386
, pp.
83
93
.
19.
Sims
,
N. D.
,
Peel
,
D. J.
,
Stanway
,
R.
,
Johnson
,
A. R.
, and
Bullough
,
W. A.
, 2000, “
The ER Long-Stroke Damper: A New Modelling Technique With Experimental Validation
,”
J. Sound Vib.
0022-460X,
229
, pp.
207
227
.
20.
Kamath
,
G. M.
,
Hurt
,
M. K.
, and
Wereley
,
N. M.
, 1996, “
Analysis and Testing of Bingham Plastic Behavior in Semi-Active Electrorheological Fluid Dampers
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
576
590
.
21.
Wereley
,
N. M.
, 2003, “
Nondimensional Analysis of Electrorheological and Magnetorheological Dampers Using a Herschel-Bulkley Constitutive Model
,”
4th ASME-JSME Fluids Engineering Conference
, FED SM2003-45046, ASME.
22.
Bitman
,
L.
,
Choi
,
Y.-T.
, and
Wereley
,
N. M.
, 2002, “
Electrorheological Damper Analysis Using An Eyring-Plastic Model
,”
Smart Structures and Materials 2002: Damping and Isolation
, edited by
G. S.
Agnes
,
SPIE
,
Bellingham, WA
, Vol.
4697
, pp.
324
335
.
23.
Choi
,
S. B.
,
Song
,
H. J.
,
Lee
,
H. H.
,
Lim
,
S. C.
,
Kim
,
J. H.
, and
Choi
,
H. J.
, 2003, “
Vibration Control of a Passenger Vehicle Featuring Magnetorheological Engine Mounts
,”
Int. J. Veh. Des.
0143-3369,
33
, pp.
2
16
.
24.
Sims
,
N. D.
,
Stanway
,
R.
, and
Beck
,
S. B. M.
, 1997, “
Proportional Feedback Control of an Electro-Rheological Vibration Damper
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
, pp.
426
433
.
25.
Sims
,
N. D.
, and
Batterbee
,
D.
, 2004, “
Skyhook Damping With Linearised MR Dampers
,”
Smart Structures and Materials: Passive Damping and Isolation
, edited by
K.-W.
Wang
SPIE
,
Bellingham, WA
, Vol.
5386
, pp.
72
83
.
26.
West
,
J. C.
, 1960,
Analytical Techniques For Non-Linear Control Systems
,
The English Universities Press Ltd
,
London
.
27.
Dorf
,
R. C.
, and
Bishop
,
R. H.
, 2001,
Modern Control Systems
, 9th ed.,
Prentice–Hall
,
Upper Saddle River, NJ
.
28.
Kaplan
,
D.
, and
Glass
,
L.
, 1995,
Understanding Nonlinear Dynamics
,
Springer-Verlag
,
New York
.
29.
Simulink, 2003, The MathWorks, Inc. 25 Prime Park Way, Natick, MA.
30.
Hilborn
,
R. C.
, 1994,
Chaos and Nonlinear Dynamics
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.