In this paper, we present two adaptive backstepping control algorithms for a second-order uncertain hysteretic structural system found in base isolation scheme for seismic active protection of building structures. The hysteretic nonlinear behavior is described by a Bouc–Wen model. The structural parameters and isolation parameters are all uncertain parameters. In the first scheme, there is no apriori information required from these parameters and the residual effect of the hysteresis is treated as a bounded disturbance. An update law is used to estimate the bound involving this partial hysteresis effect and external disturbance. In the second scheme, we further take the structure of the Bouc–Wen model describing the hysteresis into account in the controller design, if apriori knowledge on some parameters of the model is available. It is shown that not only is global stability guaranteed by the proposed controller, but also both transient and asymptotic performances are quantified as explicit functions of the design parameters so that designers can tune the design parameters in an explicit way to obtain the required closed loop behavior.

1.
Ikhouane
,
F.
,
Manosa
,
V.
, and
Rodellar
,
J.
, 2005, “
Adaptive Control of Hysteretic Structural Systems
,”
Automatica
0005-1098,
41
, pp.
225
231
.
2.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
, 1999, “
On-line Parametric Identification of Mdof Nonlinear Hysteretic Systems
,”
J. Eng. Mech.
0733-9399,
125
(
2
), pp.
133
142
.
3.
Sato
,
T.
, and
Qi
,
K.
, 1998, “
Adaptive h∞ Filter: Its Applications to Structural Identification
,”
J. Eng. Mech.
0733-9399,
124
(
11
), pp.
1233
1240
.
4.
Benedettini
,
F.
,
Capecchi
,
D.
, and
Vestroni
,
F.
, 1995, “
Identification of Hysteretic Oscillators Under Earthquake Loading by Nonparametric Models
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
121
, p.
606C612
.
5.
Chassiakos
,
A. G.
,
Masri
,
S. F.
,
Smyth
,
A.
, and
Anderson
,
J. C.
, 1995, “
Adaptive Methods for Identification of Hysteretic Structure
,” in
Proceedings of the American Control Conference
,
Washington
, USA, pp.
2349
2353
.
6.
Chassiakos
,
A. G.
,
Masri
,
S. F.
,
Smyth
,
A.
, and
Caughey
,
T. K.
, 1998, “
On-Line Identification of Hysteretic Systems
,”
J. Appl. Mech.
0021-8936,
65
, p.
194C203
.
7.
Soong
,
T. T.
, and
Dargush
,
G. F.
, 1997,
Passive Energy Dissipation Systems in Structural Engineering
,
Wiley
,
Chichester, UK
.
8.
Wen
,
Y.
, 1976, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
102
, pp.
249
263
.
9.
Spencer
,
B. D.
,
Sain
,
S. M.
, and
Carlson
,
F.
, 1997, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
0733-9399,
123
, pp.
230
238
.
10.
Battaini
,
M.
, and
Casciati
,
F.
, 1996, “
Chaotic Behavior of Hysteretic Oscillators
,”
J. Struct. Control 3
,
4
, pp.
7
19
.
11.
Barbat
,
A. H.
, and
Bozzo
,
L.
, 1997, “
Seismic Analysis of Base Isolated Buildings
,”
Arch. Comput. Methods Eng.
1134-3060,
4
, pp.
153
192
.
12.
Sain
,
P. M.
,
Sain
,
M. K.
, and
Spencer
,
B. F.
1997, “
Models for Hysteresis and Application to Structural Control
,” in
Proceedings of the American Control Conference
,
New Mexico
, USA, pp.
16
20
.
13.
Kelly
,
J. M.
,
Leitmann
,
G.
, and
Soldatos
,
A.
, 1987, “
Robust Control of Base-Isolated Structures Under Earthquake Excitation
,”
J. Optim. Theory Appl.
0022-3239,
53
, pp.
159
181
.
14.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
You do not currently have access to this content.