One-way clutches and clutch bearings are being used in a wide variety of dynamic systems. Motivated by their recent use as ratchets in piezoelectric actuators and decoupling devices in serpentine belt drives, a method of analysis of systems containing one-way clutches is presented. Two simple systems are analyzed. The goal of the first is the power transmission which would be of concern in an actuator. The goal of the second is decoupling large inertia elements to reduce loads in an oscillating system, the objective of the clutch in a serpentine belt drive. Results show how system parameters can be tuned to meet the desired performance of these piece-wise linear systems.
Issue Section:
Technical Papers
1.
Frank
, J. E.
, Mockensturm
, E. M.
, Koopmann
, G. H.
, Lesieutre
, G. A.
, Chen
, W. C.
, and Loverich
, J. Y.
, 2003, “Modeling and design optimization of a bimorph-driven rotary motor
,” J. Intell. Mater. Syst. Struct.
1045-389X, 14
, pp. 217
–227
.2.
Llibre
, J.
, and Ponce
, E.
, 2003, “Piecewise Linear Feedback Systems with Arbitrary Number of Limit Cycles
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 13
(4
), pp. 895
–904
.3.
Xia
, X.
, 2002, “Well Posedness of Piecewise-Linear Systems with Multiple Modes and Multiple Criteria
,” IEEE Trans. Autom. Control
0018-9286, 47
(10
), pp. 1716
–1720
.4.
Nakai
, M.
, Murata
, S.
, and Hagio
, S.
, 2002, “Analysis of Piecewise Linear Systems with Boundaries in Displacement and Time
,” ASME J. Vibr. Acoust.
0739-3717, 124
(4
), pp. 527
–536
.5.
Freire
, E.
, Ponce
, E.
, Rodrigo
, F.
, Torres
, and F.
, 2002, “Bifurcation Sets of Symmetrical Continuous Piecewise Linear Systems with Three Zones
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 12
(8
), pp. 1675
–1702
.6.
Xu
, L.
, Lu
, M.
, and Cao
, Q.
, 2002, “Nonlinear Vibrations of Dynamical Systems with a General Form of Piecewise-Linear Viscous Damping by Incremental Harmonic Balance Method
,” Phys. Lett. A
0375-9601, 301
(1-2
), pp. 65
–73
.7.
Ueta
, T.
, Chen
, G.
, and Kawabe
, T.
, 2001, “A Simple Approach to Calculation and Control of Unstable Periodic Orbits in Chaotic Piecewise-Linear Systems
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 11
(1
), pp. 215
–224
.8.
Theodossiades
, S.
, and Natsiavas
, S.
, 2000, “Non-Linear Dynamics of Gear-Pair Systems with Periodic Stiffness and Backlash
,” J. Sound Vib.
0022-460X, 229
(2
), pp. 287
–310
.9.
Raghothama
, A.
, and Narayanan
, S.
, 1999, “Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method
,” J. Sound Vib.
0022-460X, 226
(3
), pp. 469
–492
.10.
Natsiavas
, S.
, Theodossiades
, S.
, and Goudas
, I.
, 2000, “Dynamic Analysis of Piecewise Linear Oscillators with Time Periodic Coefficients
,” Int. J. Non-Linear Mech.
0020-7462, 35
(1
), pp. 53
–68
.11.
Freire
, E.
, Ponce
, E.
, and Ros
, J.
, 1999, “Limit Cycle Bifurcation from Center in Symmetric Piecewise-Linear Systems
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 9
(5
), pp. 895
–907
.12.
Freire
, E.
, Ponce
, E.
, Rodrigo
, F.
, and Torres
, F.
, 1998, “Bifurcation Sets of Continuous Piecewise Linear Systems with Two Zones
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 8
(11
), pp. 2073
–2097
.13.
Kahraman
, A.
, and Blankenship
, G.
, 1997, “Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-Varying Parameters
,” ASME J. Appl. Mech.
0021-8936, 64
(1
), pp. 217
–226
.14.
Kahraman
, A.
, and Blankenship
, G.
1996, “Interactions Between Commensurate Parametric and Forcing Excitations in a System with Clearance
,” J. Sound Vib.
0022-460X, 194
(3
), pp. 317
–336
.15.
Chen
, S.
, and Shaw
, S.
, 1996, “Normal Modes for Piecewise Linear Vibratory Systems
,” Nonlinear Dyn.
0924-090X, 10
(2
), pp. 135
–164
.16.
Rook
, T.
, and Singh
, R.
, 1995, “Dynamic Analysis of a Reverse-Idler Gear Pair with Concurrent Clearances
,” J. Sound Vib.
0022-460X, 182
(2
), pp. 303
–322
.17.
Chakrabarty
, K.
, and Banerjee
, S.
, 1995, “Control of Chaos in Piecewise-Linear Systems with Switching Nonlinearity
,” Phys. Lett. A
0375-9601, 200
(2
), pp. 115
–120
.18.
Pratap
, R.
, Mukherjee
, S.
, and Moon
, F.
, 1994, “Dynamic Behavior of a Bilinear Hysteretic Elastoplastic Oscillator,. 1. Free Oscillations
,” J. Sound Vib.
0022-460X, 172
(3
), pp. 321
–337
.19.
Lau
, S.
, and Zhang
, W.
, 1992, “Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic-Balance Method
,” ASME J. Appl. Mech.
0021-8936, 59
(1
), pp. 153
–160
.20.
Wong
, C.
, Zhang
, W.
, and Lau
, S.
, 1991, “Periodic Forced Vibration of Unsymmetrical Piece-wise-Linear Systems by Incremental Harmonic-Balance Method
,” J. Sound Vib.
0022-460X, 149
(1
), pp. 91
–105
.21.
Mahfouz
, I.
, and Badrakhan
, F.
, 1990, “Chaotic Behavior of Some Piecewise-Linear Systems. 1. Systems with Set-up Spring or with Unsymmetric Elasticity
,” J. Sound Vib.
0022-460X, 143
(2
), pp. 255
–288
.22.
Mahfouz
, I.
, and Badrakhan
, F.
, 1990, “Chaotic Behavior of Some Piecewise-Linear Systems, 2. Systems with Clearance
,” J. Sound Vib.
0022-460X, 143
(2
), pp. 289
–328
.23.
Choi
, Y.
, and Noah
, S.
, 1988, “Forced Periodic Vibration of Unsymmetric Piecewise-Linear Systems
,” J. Sound Vib.
0022-460X, 121
(1
), pp. 117
–126
.24.
Johnson
, K.
, 1985, Contact Mechanics
, Cambridge University Press
, New York.25.
Mockensturm
, E. M.
, Perkins
, N. C.
, and Ulsoy
, A. G.
, 1996, “Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,” ASME J. Vibr. Acoust.
0739-3717, 118
, pp. 346
–351
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.