A method to couple acoustic linear problems is presented in this paper. It allows one to consider several acoustic subsystems, coupled through surfaces divided in elementary areas called patches. These subsystems have to be studied independently with any available method, in order to build a database of transfer functions called patch transfer functions, which are defined using mean values on patches, and rigid boundary conditions on the coupling area. A final assembly, using continuity relations, leads to a very quick resolution of the problem. The basic equations are developed, and the acoustic behavior of a cavity separated in two parts is presented, in order to show the ability of the method to study a strong-coupling case. Optimal meshing size of the coupling area is then discussed, some comparisons with experiments are shown, and finally a complex automotive industrial case is presented.

1.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1989,
The Finite Element Method, 1: Basic Formulation and Linear Problems
,
McGraw Hill
, 4th Ed., New York, p.
648
.
2.
Bettess
,
P.
, 1992,
Infinite Elements
,
Penshaw Press
, p.
264
.
3.
Ciskowski
,
R. D.
, and
Brebbia
,
C. A.
, 1991,
Boundary element methods in acoustics
,
Computational mechanics publications
, Elsevier Applied Science.
4.
Zienkiewicz
,
O. C.
,
Kelly
,
D. W.
, and
Bettess
,
P.
, 1977,
Int. J. Numer. Methods Eng.
0029-5981,
11
, pp.
355
375
. The coupling of the finite element method and boundary solution procedures.
5.
Chiang
,
D. M.
, and
Chen
,
W. H.
, 1999,
J. Vib. Control
1077-5463,
6
, pp.
571
587
. A combined FEM and BEM approach for sound radiation with finite flange.
6.
Elleithy
,
W. M.
, and
Tanaka
,
M.
, 2003,
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
2977
2992
. Interface relaxation algorithms for BEM-BEM coupling and BEM-FEM coupling.
7.
Craig
,
R. J.
, 1987,
Int. J. Anal. Exp. Modal Anal.
1066-0763,
2
(
2
),
59
72
. A review of time-domain and frequency domain component mode synthesis methods.
8.
Tournour
,
M. A.
,
Atalla
,
N.
,
Chiello
,
O.
, and
Sgard
,
F.
, 2001,
Comput. Struct.
0045-7949,
79
, pp.
1861
1876
. Validation, performance, convergence and application of free interface component mode synthesis.
9.
Kergourlay
,
G.
,
Balmès
,
E.
, and
Clouteau
,
D.
, 1998,
Proceedings of International Seminar on Modal Analysis ISMA 25, Leuven, Belgium
. Model reduction for efficient FEM∕BEM coupling.
10.
Rubin
,
S.
, 1967,
J. Acoust. Soc. Am.
0001-4966,
41
, pp.
1171
1179
. Mechanical immittance- and transmission-matrix concepts.
11.
O’Hara
,
G. J.
, 1967,
J. Acoust. Soc. Am.
0001-4966,
41
, pp.
1180
1184
.
12.
Kim
,
S. M.
, 1999,
J. Sound Vib.
0022-460X,
223
(
1
),
97
113
. A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustic systems.
13.
Zhou
,
W.
, and
Kim
,
J.
, 1998,
J. Sound Vib.
0022-460X,
219
(
1
),
89
103
. Formulation of four poles of three-dimensional acoustic systems from pressure response functions with special attention to source modeling.
14.
Maxit
,
L.
,
Cacciolati
,
C.
, and
Guyader
,
J. L.
, 2002,
Proceedings of International Congress on Sound and Vibration ICSV9, Orlanda, United States
. Airborne noise prediction using patch acoustic impedance.
15.
LMS International 2003 Sysnoise Rev 5.6, User’s Manual.
16.
von Estorff
,
O.
, 2003,
Acta. Acust. Acust.
1610-1928,
89
, pp.
1
13
. Efforts to reduce computation time in numerical acoustics—an overview.
17.
Cremers
,
L.
,
Tournour
,
M.
, and
McCulloch
,
C. F.
, 2001,
Proceedings of Inter-Noise 2001, The Hague, The Netherlands
. Panel acoustic contribution analysis based on acoustic transfer vectors.
18.
von Estorff
,
O.
, and
Zaleski
,
O.
, 2003,
Engineering Analysis with Boundary Elements
, in press. Efficient acoustic calculations by the BEM and frequency interpolated transfer functions.
19.
Coyette
,
J. P.
,
Lecomte
,
C.
, and
Migeot
,
J. L.
, 1999,
Acta. Acust. Acust.
1610-1928,
85
,
371
377
. Calculation of vibro-acoustic frequency response using a single frequency boundary element solution and a Padé expansion.
20.
Augusztinovicz
,
F.
,
Sas
,
P.
,
Cremers
,
L.
,
Liebregts
,
R. M. J.
,
Mantovani
,
M.
, and
Bertolini
,
C.
, 1999,
Proceedings of ISMA 21, Leuven, Belgium
. Prediction of insertion loss of engine enclosures by indirect BEM calculations, combined with a substitution monopole source description technique.
21.
Chiesa
,
L.
,
Grosso
,
A.
,
Machetta
,
I.
,
Nijman
,
E. J. M.
, and
Schellino
,
G.
, 2003,
Proceedings of Tenth International Congress on Sound and Vibration (ICSV10), Stockholm, Sweden
. Acoustical Source Characterisation of Automotive IC Engines: Further Developments of the Substitution Monopole Technique.
You do not currently have access to this content.