The most common method to design tuned dynamic vibration absorbers is still that of Den Hartog, based on the principle of invariant points. However, this method is optimal only when attaching the absorber to a single-degree-of-freedom undamped main system. In the present paper, an extension of the classical Den Hartog approach to a multi-degree-of-freedom undamped main system is presented. The Sherman-Morrison matrix inversion theorem is used to obtain an expression that leads to invariant points for a multi-degree-of-freedom undamped main system. Using this expression, an analytical solution for the optimal damper value of the absorber is derived. Also, the effect of location of the absorber in the multi-degree-of-freedom system and the effect of the absorber on neighboring modes are discussed.

1.
Frahm
,
H
, 1909, “
Device for Damping Vibrations of Bodies
,” U.S. Patent No. 989958.
2.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
, 1928, “
Theory of the Dynamic Vibration Absorber
,”
Trans. ASME
0097-6822,
50
, pp.
9
22
.
3.
Den Hartog
,
J. P.
, 1934,
Mechanical Vibrations
,
McGraw Hill
, NY, Chap. 3 (eprint by
Dover Publications
).
4.
Pennestri
,
E.
, 1998, “
An Application of Chebyshev’s Min-Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber
,”
J. Sound Vib.
0022-460X,
217
, pp.
757
765
.
5.
Thompson
,
A. G.
, 1980, “
Auxilary Mass Throw in a Tuned and Damped Vibration Absorber
,”
J. Sound Vib.
0022-460X,
70
, pp.
481
486
.
6.
Thompson
,
A. G.
, 1981, “
Optimum Tuning and Damping of a Dynamic Vibration Absorber Applied to a Force Excited and Damped Primary System
,”
J. Sound Vib.
0022-460X,
77
, pp.
403
415
.
7.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
, 2002, “
Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
284
295
.
8.
Randall
,
S. E.
,
Halsted
,
D. M.
, and
Taylor
,
D. L.
, 1981, “
Optimum Vibration Absorbers for Linear Damped Systems
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
908
913
.
9.
Soom
,
A.
, and
Lee
,
M.
, 1983, “
Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped Systems
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
105
, pp.
112
119
.
10.
Jordanov
,
I. N.
, and
Cheshankov
,
I. B.
, 1988, “
Optimal Design of Linear and Nonlinear Dynamic Vibration Absorbers
,”
J. Sound Vib.
0022-460X,
123
, pp.
157
170
.
11.
Jordanov
,
I. N.
, and
Cheshankov
,
I. B.
, 1989, “
Optimal Design of Linear and Nonlinear Dynamic Vibration Absorbers reply
,”
J. Sound Vib.
0022-460X,
132
, pp.
157
159
.
12.
Hadi
,
M. N. S.
, and
Arfiadi
,
Y.
, 1998, “
Optimum Design of Absorber for MDOF Structures
,”
J. Struct. Eng.
0733-9445,
124
, pp.
1272
1280
.
13.
Singh
,
M. P.
, and
Moreschi
,
L. M.
, 2002, “
Optimal Placement of Dampers for Passive Response Control
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
31
, pp.
955
976
.
14.
Rana
,
R.
, and
Soong
,
T. T.
, 1998, “
Parametric Study and Simplified Design of Tuned Mass Dampers
,”
Eng. Struct.
0141-0296,
20
, pp.
193
204
.
15.
Sadek
,
F.
,
Mohraz
,
B.
,
Taylor
,
A. W.
, and
Chung
R. M.
, 1997, “
A Method of Estimating the Parameters of Tuned Mass Dampers for Seismic Applications
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
26
, pp.
617
635
.
16.
Lin
,
C.-C.
,
Wang
,
J.-F.
, and
Ueng
J.-M.
, 2001, “
Vibration Control Identification of Seismically Excited m.d.o.f Structure-PTMD Systems
,”
J. Sound Vib.
0022-460X,
240
, pp.
87
115
.
17.
Xu
,
Y. L.
, and
Kwok
,
K. C. S.
, 1994, “
Semianalytical Method for Parametric Study of Tuned Mass Dampers
,”
J. Struct. Eng.
0733-9445,
120
, pp.
747
764
.
18.
Haddad
,
W. M.
, and
Razavi
,
A.
, 1998, “
H2, Mixed H2∕H∞, H2∕L1 Optimally Tuned Passive Isolators and Absorbers
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
282
287
.
19.
Stech
,
D. J.
, 1994, “
H2 Approach for Optimally Tuning Passive Vibration Absorbers to Flexible Structures
,”
J. Guid. Control Dyn.
0731-5090,
17
, pp.
636
638
.
20.
Eskinat
,
E.
, and
Ozturk
,
L.
, 1997, “
Vibration Absorbers as Controllers
,”
4th European Control Conference Brussels
, Belgium.
21.
Vakakis
,
A. F.
, and
Paipetis
,
S. A.
, 1986, “
The Effect of a Viscously Damped Dynamic Absorber on a Linear Multi Degree of Freedom System
,”
J. Sound Vib.
0022-460X,
105
, pp.
49
60
.
22.
Kitis
,
L.
,
Wang
,
B. P.
, and
Pilkey
,
W. D.
, 1983, “
Vibration Reduction Over a Frequency Range
,”
J. Sound Vib.
0022-460X,
89
, pp.
559
569
.
23.
Ozer
,
M. B.
, and
Royston
,
T. J.
, 2005, “
Application of Sherman-Morrison Matrix Inversion Formula to Damped Vibration Absorbers Attached to Multi Degree of Freedom Systems
,”
J. Sound Vib.
0022-460X,
283
(
3-5
), pp.
1235
1249
.
24.
Lewis
,
F. M.
, 1955, “
The Extended Theory of the Viscous Vibration Damper
,”
ASME J. Appl. Mech.
0021-8936,
22
, pp.
377
382
.
25.
Plunkett
,
R.
, 1958, “
The Calculation of Optimum Concentrated Damping for Continuous Systems
,”
ASME J. Appl. Mech.
0021-8936,
25
, pp.
219
224
.
26.
Sherman
,
J.
, and
Morrison
,
W. J.
, 1949, “
Adjustment of an Inverse Matrix corresponding to changes in the elements of a given column or a given row of the Original Matrix
.”
Ann. Math. Stat.
0003-4851,
20
, p.
621
.
27.
Hager
,
W. W.
, 1989, “
Updating the Inverse of a Matrix
,”
SIAM Rev.
0036-1445,
31
, pp.
221
239
.
28.
Ozer
M. B.
, and
Royston
,
T. J.
, 2003, “
Optimal Passive Structural Sound Radiation Control Using Shunted Nonlinear Piezoelectric Materials
,”
J. Acoust. Soc. Am.
0001-4966,
114
, pp.
1934
1946
.
29.
Hong
,
K. L.
, and
Kim
,
J.
, 1996, “
New Analysis Method for General Acoustic-Structural Coupled Systems
,”
J. Sound Vib.
0022-460X,
192
, pp.
465
480
.
30.
Yang
,
B.
, 1993, “
Exact Receptances of Nonproportionally Damped Dynamic-Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
47
52
.
You do not currently have access to this content.