The goal of this experimental and theoretical study is to highlight the nonlinear dynamic behavior of an inclined cable consisting of a steel wire surrounded by copper wire. Measurements around the first frequency of vibration of the cable in and out of plane and around the second harmonic of this frequency were also carried out. These experimental results are in good agreement with the numerical results obtained via the multiple scale method applied to finite (1- and 2- degree-of-freedom (DOF) models). In order to prepare further investigations related to more complicated behavior, a 4-DOF model is added.
Issue Section:
Technical Papers
1.
Irvine
, H. M.
, and Caughey
, T. K.
, 1974, “The Linear Theory of Free Vibrations of a Suspended Cable
,” Proc. R. Soc. London, Ser. A
1364-5021 341
, pp. 299
–315
.2.
Irvine
, H. M.
, 1981, Cable Structures
, MIT Press
, Cambridge, MA.3.
Meirovitch
, L.
, 1975, Elements of Vibration Analysis
, McGraw-Hill
, NY.4.
West
, H. H.
, Geschwindner
, L. F.
, and Suhoski
. J. E.
, 1975, “Natural Vibrations of Suspension Cables
,” J. Struct. Div. ASCE
0044-8001 ST11
, pp. 2277
–2291
.5.
Henghold
, W. M.
, and Russell
, J. J.
, 1976, “Equilibrium and Natural Frequencies of Cable Structures (A Nonlinear Finite Element Approach)
,” Comput. Struct.
0045-7949 6
, pp. 267
–271
.6.
Nayfeh
, A. H.
, and Mook
, D. T.
, 1979, Nonlinear Oscillations
, Wiley
, NY.7.
Takahashi
, K.
, and Konishi
, Y.
, 1987, “Nonlinear Vibrations of Cables in Three Dimensions, Part I: Nonlinear Free Vibrations
,” J. Sound Vib.
0022-460X 118
(1
), pp. 69
–84
.8.
Takahashi
, K.
, and Konishi
, Y.
, 1987, “Nonlinear Vibrations of Cables in Three Dimensions, Part II: Out of Plane Vibrations Under In-Plane Sinusoidally Time-Varying Load
,” J. Sound Vib.
0022-460X 118
(1
), pp. 85
–97
.9.
Benedettini
, F.
, Rega
, G.
, and Alaggio
, R.
, 1995, “Nonlinear Oscillations of a Four-Degree-of-Freedom Model of a Suspended Cable Under Multiple Internal Resonance Conditions
,” J. Sound Vib.
0022-460X 182
(5
), pp. 775
–798
.10.
El-Attar
, M.
, Ghobarah
, A.
, and Aziz
, T. S.
, 2000, “Nonlinear Cable Response to Multiple Support Periodic Excitation
,” Eng. Struct.
0141-0296 22
, pp. 1301
–1312
.11.
Luongo
, A.
, Rega
G.
, and Vestroni
, F.
, 1984, “Planar Nonlinear Free Vibrations of Elastic Cable
,” Int. J. Non-Linear Mech.
0020-7462 19
(1
), pp. 39
–52
.12.
Rega
, G.
, Lacarbonara
, W.
, Nayfeh
, A. H.
, and Char-Ming
, Chin
, 1997, “Multimodal Resonances in Suspended Cables Via a Direct Perturbation Approach
,” Proc. of ASME DETC1997
, VIB-4101, Sacramento, Sept. 14–17, ASME
, New York.13.
Lilien
, J. L.
, and Pinto da Costa
, A.
, 1994, “Vibration Amplitudes Caused by Parametric Excitation of Cable Stayed Structure
,” J. Sound Vib.
0022-460X 174
(1
), pp. 69
–90
.14.
Fujino
, Y.
, Warnitchai
, P.
, and Pacheco
, B. M.
, 1992, “An Experimental and Analytical Study of Autoparametric Resonance in a 3 DOF Model of Cable-Stayed-Beam
,” Nonlinear Dyn.
0924-090X 4
, pp. 111
–138
.15.
Khadraoui
, I.
, 1999, “Contribution à la Modélisation et à L’Analyse Dynamique des Structures à Câbles
,” Thèse de Doctorat, Université d’Evry, 262
p, (in French).16.
Berlioz
, A.
, Lamarque
, C. H.
, and Malasoma
, J. M.
, 2001, “Nonlinear Behavior of an Inclined Cable: Experimental and Analytical Investigations
,” Proc. of ASME DETC2001
, VIB-21557, Pittsburgh, Sept. 9–12, ASME
, New York.17.
Zhao
, Y. Y.
, Wang
, L. H.
, Chen
, D. L.
, and Jiang
, L. Z.
, 2002, “Nonlinear Dynamics Analysis of the Two-Dimensional Simplified Model of an Elastic Cable
,” J. Sound Vib.
0022-460X, 255
(1
), pp. 43
–59
.18.
Triantafyllou
, M. S.
, and Grinfogel
, L.
, 1986, “Natural Frequencies and Modes of Inclined Cables
,” J. Struct. Eng.
0733-9445 112
, pp. 139
–148
.19.
Berlioz
, A.
, and Lamarque
, C. H.
, 2004, “A Nonlinear Model for the Dynamics of an Inclined Cable
,” J. Sound Vib.
0022-460X, 279
(3–5
), pp. 619
–639
.20.
Perkins
, N. C.
, 1992, “Modal Interactions in the Nonlinear Response of Elastic Cables Under Parametric/External Excitation
,” Int. J. Non-Linear Mech.
0020-7462 27
(2
), pp. 233
–250
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.