Abstract

A verification study was conducted for URANS (Unsteady Reynolds-Averaged Navier–Stokes) simulations of flow around a 5:1 rectangular cylinder at a Reynolds number of 56,700 (based on the cylinder depth) using the k–ω SST (shear stress transport) turbulence model and the γReθ transition model for three types of grids (a fully structured grid and two hybrid grids generated using Delaunay and advancing front techniques). The grid convergence index (GCI) and least squares (LS) procedures were employed to estimate discretization error and associated uncertainties. The result indicates that the LS procedure provides the most reliable estimates of discretization error uncertainties for solution variables in the structured grid from the k–ω SST model. From the six solution variables of interest, the highest relative uncertainty was typically observed in the root-mean-square (rms) of lift coefficient, followed by time-averaged reattachment length and peak rms of pressure coefficient on the top and bottom surfaces of the cylinder. The solution variable with the lowest uncertainty was Strouhal number, followed by time-averaged drag coefficient. It is also noted that the GCI and LS procedures produce noticeably different uncertainty estimates, primarily due to inconsistences in their estimated observed orders of accuracy and safety factors. To successfully apply the procedures to practical problems, further research is required to reliably estimate uncertainties in solutions with “noisy” grid convergence behaviors and observed orders of accuracy.

References

1.
Blocken
,
B.
,
2014
, “
50 Years of Computational Wind Engineering: Past, Present and Future
,”
J. Wind Eng. Ind. Aerodyn.
,
129
(
Suppl C
), pp.
69
102
.10.1016/j.jweia.2014.03.008
2.
Tamura
,
Y.
, and
Phuc
,
P. V.
,
2015
, “
Development of CFD and Applications: Monologue by a non-CFD-Expert
,”
J. Wind Eng. Ind. Aerodyn.
,
144
, pp.
3
13
.10.1016/j.jweia.2015.05.003
3.
Stathopoulos
,
T.
,
1997
, “
Computational Wind Engineering: Past Achievements and Future Challenges
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
509
532
.10.1016/S0167-6105(97)00097-4
4.
Simiu
,
E.
, and
Yeo
,
D.
,
2019
,
Wind Effects on Structures: Modern Structural Design for Wind
,
Wiley-Blackwell
,
Hoboken/Oxford
, NJ/UK.
5.
ASCE
,
2022
, “
Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-22)
,”
American Society of Civil Engineers
,
Reston, VA
, ASCE Standard No. ASCE/SEI
7
22
.
6.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
7.
AIAA
,
1998
,
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998(2002)
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
8.
ASME
,
2016
, “
Standards for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” ASME V&V 20-2009,
American Society of Mechanical Engineers
,
New York
.
9.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London. Ser. A
,
210
(
459–470
), pp.
307
357
.
10.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
11.
Cadafalch
,
J.
,
PéRez-Segarra
,
C. D.
,
CòNsul
,
R.
, and
Oliva
,
A.
,
2002
, “
Verification of Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
11
21
.10.1115/1.1436092
12.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.10.1115/1.1412235
13.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.10.1115/1.4001771
14.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121401
.10.1115/1.4027353
15.
Eça
,
L.
, and
Hoekstra
,
M.
, “
An Evaluation of Verification Procedures for CFD Applications
,”
Proceedinngs of 24th Symposium on Naval Hydrodynamics
, Fukuoka, Japan, pp.
566
584
.
16.
Rosetti
,
G. F.
,
Vaz
,
G.
, and
Fujarra
,
A. L. C.
,
2012
, “
URANS Calculations for Smooth Circular Cylinder Flow in a Wide Range of Reynolds Numbers: Solution Verification and Validation
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121103
.10.1115/1.4007571
17.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Socorro, NM
.
18.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
(
Suppl C
), pp.
104
130
.10.1016/j.jcp.2014.01.006
19.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2016
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
1
(
4
), p.
041006
.10.1115/1.4035666
20.
Yang
,
Y.
,
Li
,
M.
,
Kim
,
H.-K.
, and
Li
,
M.
,
2020
, “
Measurements of Fluctuating Lift Forces on Rectangular Cylinders in Turbulent Flow
,”
Phys. Fluids
,
32
(
1
), p.
015109
.10.1063/1.5125657
21.
Rocchio
,
B.
,
Mariotti
,
A.
, and
Salvetti
,
M. V.
,
2020
, “
Flow Around a 5:1 Rectangular Cylinder: Effects of Upstream-Edge Rounding
,”
J. Wind Eng. Ind. Aerodyn.
,
204
, p.
104237
.10.1016/j.jweia.2020.104237
22.
Bruno
,
L.
,
Salvetti
,
M. V.
, and
Ricciardelli
,
F.
,
2014
, “
Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An Overview After the First Four Years of Activity
,”
J. Wind Eng. Ind. Aerodyn.
,
126
, pp.
87
106
.10.1016/j.jweia.2014.01.005
23.
Mannini
,
C.
,
Marra
,
A. M.
,
Pigolotti
,
L.
, and
Bartoli
,
G.
,
2017
, “
The Effects of Free-Stream Turbulence and Angle of Attack on the Aerodynamics of a Cylinder With Rectangular 5:1 Cross Section
,”
J. Wind Eng. Ind. Aerodyn.
,
161
, pp.
42
58
.10.1016/j.jweia.2016.12.001
24.
Siconolfi
,
L.
,
Mariotti
,
A.
, and
Salvetti
,
M. V.
, “
Uncertainty Quantification in Large-Eddy Simulations of the Flow Around a 5:1 Rectangular Cylinder
,”
Proceedings of Direct and Large-Eddy Simulation X
,
Springer International Publishing
, Cham, Switzerland, pp.
101
107.
25.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House, Inc
., New York, pp.
625
632
.
26.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
27.
Eça
,
L.
,
Vaz
,
G.
, and
Hoekstra
,
M.
,
2018
, “
On the Role of Iterative Errors in Unsteady Flow Simulations
,”
21st Numerical Towing Tank Symposium (NuTTS 2018)
,
Cortona, Italy
.https://www.researchgate.net/publication/328064499_On_the_Role_of_Iterative_Errors_in_Unsteady_Flow_Simulations
28.
Zikanov
,
O.
,
2010
,
Essential Computational Fluid Dynamics
,
Wiley
,
Hoboken, NJ
.
29.
Eça
,
L.
,
Vaz
,
G.
,
Toxopeus
,
S. L.
, and
Hoekstra
,
M.
,
2019
, “
Numerical Errors in Unsteady Flow Simulations
,”
ASME J. Verification, Validation Uncertainty Quantif.
,
4
(
2
), p.
021001
.10.1115/1.4043975
30.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078004
.10.1115/1.2960953
31.
Eça
,
L.
,
Vaz
,
G.
, and
Hoekstra
,
M.
,
2018
, “
A Contribution for the Assessment of Discretization Error Estimators Based on Grid Refinement Studies
,” ASME
J. Verification, Validation Uncertainty Quantif.
,
3
(
2
), p.
021001
.10.1115/1.4040803
32.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, New York.
33.
Menter
,
F.
,
1993
, “
Zonal Two Equation k–ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.1993-2906
34.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
35.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW industries
.
36.
Menter
,
F. R.
,
1992
, “
Influence of Freestream Values on k-Omega Turbulence Model Predictions
,”
AIAA J.
,
30
(
6
), pp.
1657
1659
.10.2514/3.11115
37.
OpenFOAM
,
2017
, “
The Open Source CFD Toolbox: User Guide (Version 5.0
,” ),
OpenFOAM Foundation Ltd.
, accessed Oct. 28, 2023, http://openfoam.org
38.
Pointwise
,
2017
, “
Software for CFD Mesh Generation (Version
,” 17),” accessed Oct. 28, 2023, www.pointwise.com
39.
Liseikin
,
V. D.
,
2017
,
Grid Generation Methods
,
Springer International Publishing
, Cham, Switzerland.
You do not currently have access to this content.