Abstract

The tip of the high-pressure turbine blade is critical for gas turbine performance. Hot gas leaking through the tip gap tends to oxidize and erode the blade while generating significant aerodynamic loss. Squealer tips are often used to maximize efficiency, but the thin rims are thermally vulnerable and difficult to cool. The resultant degradation often limits engine life, turbine entry temperatures, and thermal efficiency. This work considers means to improve the cooling of squealer tips to minimize degradation. Compared to conventional, cylindrical-hole designs, a step-change improvement in cooling effectiveness can be achieved using near-tip slots. In this configuration, coolant is ejected in an approximately streamwise direction along the pressure side rim, cooling a large area with high effectiveness. Experiments characterizing cooling and aerodynamics are performed in a representative linear cascade on an inclined slot design developed to enhance manufacturability while retaining high cooling effectiveness. This design is shown to more than double the cooling effectiveness on the pressure side rim compared to a conventional discrete-hole baseline. Improved coolant shielding is retained for varying mass flowrates, tip clearances, and density ratios. Aerodynamic measurements show that the slot design can outperform the baseline provided the coolant mass fraction between the slots is suitably optimized.

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1990
, “
Prediction of Tip-Leakage Losses in Axial Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
204
210
.
3.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
4.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
5.
Azad
,
S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
452
459
.
6.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.-C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.
7.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J.-C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
8.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J.-C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
9.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Bunker
,
R. S.
, and
Prakash
,
C.
,
2004
, “
Effects of Tip Gap Film Injection From Plain and Squealer Blade Tips
,”
Volume 3: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
, pp.
419
427
.
10.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2007
, “
Effect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip
,”
ASME J. Turbomach.
,
129
(
1
), pp.
151
163
.
11.
Yang
,
H.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2004
, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film-Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,”
Volume 3: Turbo Expo 2004
,
ASMEDC
, pp.
177
187
.
12.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
Volume 7: Turbomachinery, Parts A and B
, ASMEDC, pp.
1051
1061
.
13.
Vieira
,
J. A. C.
,
Coull
,
J.
, and
Ireland
,
P.
,
2024
, “
Implementation of cooling slots at the pressure side rims of squealer tips
,”
Journal of the Global Power and Propulsion Society
,
8
, pp.
421
435
.
14.
Wheeler
,
A. P. S.
, and
Saleh
,
Z.
,
2013
, “
Effect of Cooling Injection on Transonic Tip Flows
,”
J. Propul. Power
,
29
(
6
), pp.
1374
1381
.
15.
Zhou
,
C.
, and
Hodson
,
H.
,
2011
, “
The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling
,”
ASME J. Turbomach.
,
133
(
4
), p.
041028
.
16.
Vieira
,
J.
,
Coull
,
J.
,
Ireland
,
P.
, and
Romero
,
E.
,
2021
, “
Aerothermal Effect of Cavity Welding Beads on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
143
(
11
), p.
111009
.
17.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T. H.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.
18.
Moinier
,
P.
, and
Giles
,
M. B.
,
1998
, “
Stability Analysis of Preconditioned Approximations of the Euler Equations on Unstructured Meshes
,”
J. Comput. Phys.
,
178
(
2
), pp.
498
519
.
19.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
20.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J.-C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
21.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
GT2009-60306 Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Power for Land
,
Orlando, FL
,
June 8–12
.
22.
Narzary
,
D.
,
Liu
,
K.
,
Han
,
J.-C.
,
Mhetras
,
S.
, and
Landis
,
K.
,
2014
, “
Turbine Blade Tip Film-Cooling and Heat Transfer Measurements at High Blowing Ratios
,”
Volume 5B: Heat Transfer
,
Dusseldorf, Germany
,
June 16–20
.
23.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Orlando, FL
,
June 2-5
.
24.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.
25.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
You do not currently have access to this content.