Abstract

Quantifying and predicting the effects of freestream turbulence on the aerodynamic performance of turbomachinery flows continues to be of primary interest to advance the physical understanding and modeling of loss mechanisms. This work is motivated by the need to expose turbine flows to a wide class of inlet turbulence fields, characterized by the peculiarity of setting the turbulence intensity levels and yet tuning the turbulence scales independently. This article describes the development and experimental characterization of an active turbulence generator concept that provides the authority to enable future experimental measurements in turbine cascade rigs. The study has been conducted in an auxiliary low-speed test bench with a small cross-sectional area, testing at low Mach numbers (0.05) and ambient conditions. Pressure, hot-wire anemometry, and particle image velocimetry (PIV) measurements are presented. The results indicate that the active turbulence generator is capable of generating a wide range of homogeneous and isotropic freestream turbulence. Turbulence levels in the range of 1.5–13% with minimum pressure losses and a low degree of nonuniformity (<5%) have been obtained with the ability to independently control the integral length scale within the range of 6–25 mm.

References

1.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
2.
Bangert
,
B. A.
,
Kohli
,
A.
,
Sauer
,
J. H.
, and
Thole
,
K. A.
,
1997
, “
High Freestream Turbulence Simulation in a Scaled-Up Turbine Vane Passage
,”
Proceedings of the ASME Turbo Expo
,
Orlando, FL
,
June 2–5
, p. V001T03A009.
3.
Vera
,
M.
, and
Hodson
,
H. P.
,
2002
, “
Low Speed vs High Speed Testing of LP Turbine Blade-Wake Interaction
,” The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, September 2002, pp.
23
24
.
4.
Halstead
,
D. E.
,
1996
, “
Boundary Layer Development in Multi-stage Low-Pressure Turbines
,” Ph.D. thesis,
Iowa State University
,
Ames, IA
.
5.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power
,
23
(
1
), pp.
227
234
.
6.
Coton
,
T.
,
2004
, “
Unsteady Wake-Boundary Layer Interaction on Advanced High-Lift Low-Pressure Turbine Airfoils
,” Ph.D. thesis,
von Karman Institute for Fluid Dynamics
,
Sint-Genesius-Rode, Belgium
.
7.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.
8.
Wang
,
H. P.
,
Goldstein
,
R. J.
, and
Olson
,
S. J.
,
1999
, “
Effect of High Free-Stream Turbulence With Large Length Scale on Blade Heat/Mass Transfer
,”
ASME J. Turbomach.
,
121
(
2
), pp.
217
224
.
9.
Butler
,
R. J.
,
Byerley
,
A. R.
,
Van Treuren
,
K.
, and
Baughn
,
J. W.
,
2001
, “
The Effect of Turbulence Intensity and Length Scale on Low-Pressure Turbine Blade Aerodynamics
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
123
133
.
10.
Mahallati
,
A.
, and
Sjolander
,
S. A.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part II: Blade-Wake Interaction
,”
ASME J. Turbomach.
,
135
(
1
), p.
011011
.
11.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part I: Steady Flow Measurements
,”
ASME J. Turbomach.
,
135
(
1
), p.
011010
.
12.
Folk
,
M.
,
Miller
,
R. J.
, and
Coull
,
J. D.
,
2020
, “
The Impact of Combustor Turbulence on Turbine Loss Mechanisms
,”
ASME J. Turbomach.
,
142
(
9
), p.
091009
.
13.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
High-Fidelity Simulations of a Linear HPT Cascade Vane Subject to Varying Inlet Turbulence
,”
ASME Turbo Expo
,
Charlotte, NC
,
June 26–30
, p.
V02AT40A001
.
14.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
(
1
), pp.
1
32
.
15.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review
,”
Int. J. Turbomach. Propuls. Power
,
2
(
2
).
16.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2010
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
(
1
).
17.
Babajee
,
J.
, and
Arts
,
T.
,
2012
, “
Investigation of the Laminar Separation-Induced Transition With the γreθ Transition Model on Low Pressure Turbine Rotor Blades at Steady Conditions
,”
ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, pp.
1167
1178
.
18.
Bode
,
C.
,
Aufderheide
,
T.
,
Kozulovic
,
D.
, and
Friedrichs
,
J.
,
2014
, “
The Effects of Turbulence Length Scale on Turbulence and Transition Prediction in Turbomachinery Flows
,”
ASME Turbo Expo
,
Dusseldorf, Germany
,
June 16–20
, p. V02BT39A042.
19.
Maciejewki
,
P. K.
, and
Moffat
,
R. J.
,
1992
, “
Heat Transfer With Very Hugh Free-stream Turbulence: Part II—Analysis of Results
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
834
839
.
20.
Thole
,
K. A.
,
Bogard
,
D. G.
, and
Whan-Tong
,
J. L.
,
1994
, “
Generating High Freestream Turbulence Levels
,”
Exp. Fluids
,
17
(
1
), pp.
375
380
.
21.
Kingery
,
J. E.
, and
Ames
,
F. E.
,
2016
, “
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
,”
ASME J. Turbomach.
,
138
(
8
), p.
081005
.
22.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2014
, “
Design of a Nonreacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081501
.
23.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2006
, “
Experimental Evaluation of an Inlet Profile Generator for High-Pressure Turbine Tests
,”
ASME J. Turbomach.
,
129
(
2
), pp.
382
393
.
24.
Notaristefano
,
A.
,
Persico
,
G.
, and
Gaetani
,
P.
,
2024
, “
Turbulence Measurements Downstream of a Combustor Simulator Designed for Studies on the Combustor–Turbine Interaction
,”
Int. J. Turbomach., Propuls. Power
,
9
(
1
).
25.
Makita
,
H.
,
1991
, “
Realization of a Large-Scale Turbulence Field in a Small Wind Tunnel
,”
Fluid Dyn. Res.
,
8
(
1
), pp.
53
64
.
26.
Gad-el-Hak
,
M.
, and
Corrsin
,
S.
,
1974
, “
Measurements of the Nearly Isotropic Turbulence Behind a Uniform Jet Grid
,”
J. Fluid Mech.
,
62
(
1
), pp.
115
143
.
27.
O’Brien
,
J. E.
, and
Van Fossen
,
G. J.
,
1985
, “The Influence of Jet-Grid Turbulence on Heat Transfer From the Stagnation Region of a Cylinder in Crossflow,” NASA-TM 87011,
NASA Lewis Research Center
,
Cleveland, OH
.
28.
Young
,
C. D.
,
Han
,
J. C.
,
Huang
,
V.
, and
Rivir
,
R. B.
,
1974
, “
Influence of Jet-Grid Turbulence on Flat Plate Turbulent Boundary Layer Flow and Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
1
), pp.
65
72
.
29.
Boyle
,
R. J.
,
Lucci
,
B. L.
,
Verhoff
,
V. G.
,
Camperchioli
,
W. P.
, and
La
,
H.
,
1998
, “
Aerodynamics of a Transitioning Turbine Stator Over a Range of Reynolds Numbers
,”
ASME Turbo Expo
,
Stockholm, Sweden
,
June 2–5
, p. V001T01A077.
30.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Amsterdam, Netherlands
,
June 3–6
, pp.
961
968
.
31.
Fransson
,
J. H. M.
, and
Shahinfar
,
S.
,
2020
, “
On the Effect of Free-stream Turbulence on Boundary-Layer Transition
,”
J. Fluid Mech.
,
899
, p.
A23
.
32.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
33.
Aufderheide
,
T.
,
Bode
,
C.
,
Friedrichs
,
J.
, and
Kozulovic
,
D.
,
2014
, “
The Generation of Higher Levels of Turbulence in a Low-Speed Cascade Wind Tunnel by Pressurized Tubes
,”
11th World Congress on Computational Mechanics
,
Barcelona, Spain
,
June 20–25
.
34.
Bruun
,
H. H.
,
1996
, “
Hot-Wire Anemometry: Principles and Signal Analysis
,”
Meas. Sci. Technol.
,
7
(
10
), p.
024
.
35.
George
,
W. K.
,
Beuther
,
P. D.
, and
Shabbir
,
A.
,
1989
, “
Polynomial Calibrations for Hot Wires in Thermally Varying Flows
,”
Exp. Therm. Fluid Sci.
,
2
(
2
), pp.
230
235
.
36.
Yasa
,
T.
,
Paniagua
,
G.
, and
Denos
,
R.
,
2005
, “Hot-Wire Anemometry for Non-isothermal Flows and Effect of Aging of the Sensor Wire,”
Data Acquisition and Signal Processing for Turbomachinery Applications
,
Von Karman Institute for Fluid Dynamics
.
37.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.
38.
Jorgensen
,
F. E.
,
2005
, “How to Measure Turbulence With Hot-Wire Anemometers,”
DANTEC Dynamics
,
Tonsbakken, Denmark
, Technical Report No. 9040U6154.
39.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill Book Company
,
New York
, p.
488
.
40.
Batchelor
,
G. K.
,
1953
,
The Theory of Homogeneous Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
41.
Hearst
,
R. J.
,
2015
, “
Fractal, Classical, and Active Grid Turbulence: From Production to Decay
,” Ph.D. thesis,
University of Toronto
,
Toronto, Ontario, Canada
.
42.
Mohamed
,
M. S.
, and
Larue
,
J. C.
,
1990
, “
The Decay Power Law in Grid-Generated Turbulence
,”
J. Fluid Mech.
,
219
, pp.
195
214
.
43.
Baines
,
W.
, and
Peterson
,
E.
,
1951
, “
An Investigation of Flow Through Screens
,”
Trans. Am. Soc. Mech. Eng.
,
73
(
5
), pp.
467
477
.
44.
Lewalle
,
J.
, and
Ashpis
,
D. E.
,
2004
, “Estimation of Time Scales in Unsteady Flows in a Turbomachinery Rig, NASA-TM 209452,
NASA Lewis Research Center
,
Cleveland, OH
.
You do not currently have access to this content.