Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Large-scale commercial turbofan designs are typically evaluated early in the technology maturation phase through subscale rig tests, while evaluations at full scale can only feasibly occur much later in a given engine development program. Therefore, how Reynolds number (Re) affects the aerodynamic and acoustic performance is of key interest while multiple candidate fan designs are still being evaluated and refined early in the program, and often tested scaled down to lower Re relative to the end application. To confidently evaluate full-scale Re performance, however, large-scale physical testing is traditionally required because the high-fidelity simulations needed to capture the complex physics associated with high Re turbulent flows, such as wall-resolved large eddy simulations (LES), are challenging due to the extremely high computational cost. In this article, we present wall-resolved LES of an open fan blade at full scale for a highly loaded design operating at a condition representative of takeoff for acoustic considerations. The simulations are at high order (up to sixth) and have been performed using the unstructured LES solver, GENESIS. These simulations extend prior research to allow for a study of practically relevant flight scale Re, for which wall-resolved LES is now possible with computing capability available at the Oak Ridge Leadership Computing Facility (OLCF) exascale supercomputer, Frontier. The observed effects at flight scale Reynolds number of the flow physics on the blade and into the wake are presented in specific regions of interest that can affect the overall blade aeroacoustic design.

References

1.
Khalid
,
S. A.
,
Lurie
,
D.
,
Breeze-Stringfellow
,
A.
,
Wood
,
T.
,
Ramakrishnan
,
K.
,
Paliath
,
U.
,
Wojno
,
J.
,
Janardan
,
B.
,
Goerig
,
T.
, and
Opalski
,
A.
,
2013
, “Open Rotor Engine Aeroacoustic Technology,” Final Report DOT/FAA/AEE/2014-04, FAA Continuous Lower Energy, Emissions and Noise (CLEEN) Program, https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/apl/Open_Rotor_Public_Final_Report.pdf, Accessed April 2024.
2.
Zante
,
D. V.
,
Collier
,
F.
,
Orton
,
A.
,
Khalid
,
S. A.
,
Wojno
,
J.
, and
Wood
,
T.
,
2014
, “
Progress in Open Rotor Propulsors: The FAA/GE/NASA Open Rotor Test Campaign
,”
Aeronaut. J.
,
118
(
1208
), pp.
1181
1213
.
3.
Churchfield
,
M.
, and
Blaisdell
,
G.
,
2013
, “
Reynolds Stress Relaxation Turbulence Modeling Applied to a Wingtip Vortex Flow
,”
AIAA J.
,
51
(
11
), pp.
2643
2655
.
4.
Chow
,
J.
,
1994
, “
Turbulence Measurements in the Near-Field of a Wingtip Vortex
,” Ph.D. thesis,
Department of Mechanical Engineering, Stanford University
,
Palo Alto, CA
.
5.
Priebe
,
S.
,
Wood
,
T.
,
Yi
,
J.
, and
Mousavi
,
A.
,
2022
, “
Large Eddy Simulation of an Open Rotor Fan Blade
,” Proceedings of the ASME Turbo Expo, Paper No. GT2022-80538.
6.
Reid
,
C.
,
1988
, “
Overview of Flight Testing of GE Aircraft Engines’ UDF Engine
,”
24th Joint Propulsion Conference
,
Boston, MA
,
July 11–13
.
7.
Francois
,
B.
,
Barrier
,
R.
, and
Polacsek
,
C.
,
2020
, “
Zonal Detached Eddy Simulation of the Fan-OGV Stage of a Modern Turbofan Engine
,” Proceedings of the ASME Turbo Expo, Paper No. GT2020-14239.
8.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Richardson
,
E.
,
2018
, “
Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach.
,
140
(
7
), p.
071005
.
9.
Priebe
,
S.
,
Wilkin
,
D.
,
Breeze-Stringfellow
,
A.
,
Mousavi
,
A.
,
Bhaskaran
,
R.
, and
D’Aquila
,
L.
,
2022
, “
Large Eddy Simulations of a Transonic Airfoil Cascade
,” Proceedings of the ASME Turbo Expo, Paper No. GT2022-80683.
10.
Bode
,
C.
,
Przytarski
,
P. J.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2022
, “
Highly Resolved Large-Eddy Simulations of a Transonic Compressor Stage Midspan Section Part I: Effect of Inflow Disturbances
,” Proceedings of the ASME Turbo Expo, Paper No. GT2022-81673.
11.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
.
12.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.
13.
Slotnick
,
J. P.
,
Khodadoust
,
A.
,
Alonso
,
J.
,
Darmofal
,
D.
,
Gropp
,
W.
,
Lurie
,
E.
, and
Mavriplis
,
D. J.
,
2014
, “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,” Technical Report No. NASA/CR–2014-218178, NASA, Washington, DC.
14.
The TOP500
,
2022
, “
TOP 500 List
,” www.top500.org/lists/top500/2022/06/, Accessed June 2022.
15.
Huynh
,
H. T.
,
2007
, “
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
,”
18th AIAA Computational Fluid Dynamics Conference
,
Miami, FL
,
June 25–28
.
16.
Cockburn
,
B.
, and
Shu
,
C. W.
,
1998
, “
The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems
,”
J. Comput. Phys.
,
141
(
2
), pp.
199
224
.
17.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
, “Spectral/Hp Element Methods for Computational Fluid Dynamics,”
Numerical Mathematics and Scientific Computation
, 2nd ed.,
Oxford University Press
,
Oxford, New York
.
18.
Hesthaven
,
J. S.
, and
Warburton
,
T.
,
2008
,
Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
, 1st ed.,
Springer
,
New York
.
19.
Gottlieb
,
S.
, and
Shu
,
C. W.
,
1998
, “
Total Variation Diminishing Runge-Kutta Schemes
,”
Math. Comput. Am. Math. Soc.
,
67
(
221
), pp.
73
85
.
20.
Wang
,
Z. J.
,
Li
,
Y.
,
Jia
,
F.
,
Laskowski
,
G. M.
,
Kopriva
,
J.
,
Paliath
,
U.
, and
Bhaskaran
,
R.
,
2017
, “
Towards Industrial Large Eddy Simulation Using the FR/CPR Method
,”
Comput. Fluids
,
156
, pp.
579
589
.
21.
Jia
,
F.
,
Ims
,
J.
,
Wang
,
Z. J.
,
Kopriva
,
J.
, and
Laskowski
,
G. M.
,
2018
, “
An Evaluation of a Commercial and a High Order FR/CPR Solvers for Industrial Large Eddy Simulation
,” 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper No. 2018-0827.
22.
Alhawwary
,
M.
, and
Wang
,
Z. J.
,
2019
, “
On the Mesh Resolution of Industrial LES Based on the DNS of Flow Over the T106C Turbine
,”
Adv. Aerodyn.
,
1
, p.
21
.
23.
Jourdan
,
E.
, and
Wang
,
Z. J.
,
2020
, “
Efficient Implementation of the FR/CPR Method on GPU Clusters for Industrial Large Eddy Simulation
,”
AIAA Aviation 2020 Forum
,
Reno, NV
,
June 15–19
.
24.
Bhaskaran
,
R.
,
Jia
,
F.
,
Laskowski
,
G.
,
Wang
,
Z.
, and
Paliath
,
U.
,
2017
, “
Towards High-Order Large Eddy Simulation of Aero-Thermal Flows for Turbomachinery Applications
,” Proceedings of the ASME Turbo Expo, Paper No. GT2017-63358.
25.
Bhaskaran
,
R.
, and
Ledezma
,
G.
,
2020
, “
Near Wall Resolution Requirements for High-Order FR/CPR Method for Wall-Resolved Large Eddy Simulations
,” Proceedings of the ASME Turbo Expo, Paper No. GT2020-14432.
26.
GE Aerospace
,
2021
, “
GE Aviation and Safran Launch Advanced Technology Demonstration Program for Sustainable Engines; Extend CFM Partnership to 2050
,” www.ge.com/news/press-releases/ge-aviation-and-safran-launch-advanced-technology-demonstration-program-for, Accessed June 14, 2021.
27.
Smits
,
A. J.
,
McKeon
,
B. J.
, and
Marusic
,
I.
,
2011
, “
High-Reynolds Number Wall Turbulence
,”
Annu. Rev. Fluid Mech.
,
43
, pp.
353
375
.
28.
Hoyas
,
S.
,
Oberlack
,
M.
,
Alcántra-Ávila
,
F.
,
Kraheberger
,
S. V.
, and
Laux
,
J.
,
2022
, “
Wall Turbulence at High Friction Reynolds Numbers
,”
Phys. Rev. Fluids
,
7
(
1
), p.
014602
.
29.
Holmes
,
G.
,
Mitchell
,
B.
, and
Lorence
,
C.
,
1998
, “Three Dimensional Linearized Navier-Stokes Calculations for Flutter and Forced Response,”
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
T.H.
Fransson
, ed.,
Springer
,
Dordrecht
, pp.
211
224
.
30.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Cañada, CA
.
31.
Wilcox
,
D. C.
,
2008
, “
Formulation of the K-ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
32.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow, Turbul. Combust.
,
95
, pp.
583
619
.
33.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
34.
Na
,
Y.
, and
Moin
,
P.
,
1998
, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
374
, pp.
379
405
.
35.
Karve
,
R.
,
Priebe
,
S.
,
Chakrabarti
,
S.
,
D’Aquila
,
L.
,
Jourdan
,
E.
,
Alhawwary
,
M.
,
Ramakrishnan
,
K.
,
Wood
,
T.
,
Bharadwaj Ananthan
,
V.
, and
Mousavi
,
A.
,
2024
, “
Analysis of Aeroacoustic Sources Using Large Eddy Simulation of an Open Fan Blade at Full Scale
,”
30th AIAA/CEAS Aeroacoustics Conference
,
Rome, Italy
,
June 4–7
.
You do not currently have access to this content.