Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Classical throughflow methodologies, due to their oversimplified assumptions regarding dimensionality reduction, result in a significant reliance on empirical inputs. This paper introduces a rigorous dimensionality reduction approach, building upon Adamczyk’s average-passage approach, wherein four averaging operators are incorporated into the Navier–Stokes equations. This method dispels the conventional assumptions of time averaging and passage periodicity inherent in primary equations, simultaneously addressing circumferential non-uniformity in the flow field through the inclusion of high-order source terms in the equations. The study employs a time-marching numerical method to solve the averaged equations and offers a comprehensive discussion on the influence and role of high-order source terms, derived from three-dimensional unsteady Reynolds-averaged Navier–Stokes results, in throughflow solutions. The transonic fan case’s results presented in this paper underscore the critical significance of high-order source terms in throughflow calculations, particularly concerning temporal and circumferential fluctuations. At the design point, considering temporal correlations reveals the wake recovery effect, resulting in a 3% increase in flow capacity, alongside heightened pressure ratio and efficiency. Conversely, incorporating circumferential correlations, intricately associated with steady flow structure, induces a 5% reduction in flow capacity, accompanied by a decrease in pressure ratio and efficiency. This paper advocates for the accurate modeling of high-order source terms and identifying computational error sources to improve the precision of throughflow solutions, though the actual modeling of these terms is not the focus of this paper.

References

1.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 1–Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
.
2.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publications
,
Malabar, FL
.
3.
Novak
,
R. A.
,
1967
, “
Streamline Curvature Computing Procedures for Fluid-Flow Problems
,”
ASME J. Eng. Power
,
89
(
4
), pp.
478
490
.
4.
Damle
,
S. V.
,
Dang
,
T. Q.
, and
Reddy
,
D. R.
,
1997
, “
Throughflow Method for Turbomachines Applicable for All Flow Regimes
,”
ASME J. Turbomach.
,
119
(
2
), pp.
256
262
.
5.
Marsh
,
H.
,
1966
, “A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachine Using a Matrix Method,” Aeronautical Research Council, Technical Report R&M 3509, https://reports.aerade.cranfield.ac.uk/handle/1826.2/4086.
6.
Novak
,
R. A.
, and
Hearsey
,
R. M.
,
1977
, “
A Nearly Three-Dimensional Intrablade Computing System for Turbomachinery
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
154
166
.
7.
Gui
,
X.
,
1993
, “
The Research on the Model of Contrallable Shock Wave Used in the Design of Transonic Axial Fan/Compressor Stage
,” Ph.D. thesis,
Beihang University
,
Beijing, China
.
8.
Yang
,
C.
,
Wu
,
H.
,
Yang
,
J.
, and
Ferlauto
,
M.
,
2019
, “
Time-Marching Throughflow Analysis of Multistage Axial Compressors Based on a Novel Inviscid Blade Force Model
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
233
(
14
), pp.
5239
5252
.
9.
Zhou
,
C.
,
Yue
,
Z.
,
Jin
,
D.
,
Zhang
,
J.
,
An
,
L.
,
Lan
,
F.
, and
Gui
,
X.
,
2022
, “
Improving Experiment Data Process Accuracy for Axial Compressors: Converting Inter-Stage Data Into Meridional Flow Fields
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
236
(
12
), pp.
2483
2495
.
10.
Horlock
,
J. H.
, and
Marsh
,
H.
,
1971
, “
Flow Models for Turbomachines
,”
J. Mech. Eng. Sci.
,
13
(
5
), pp.
358
368
.
11.
Smith
,
L. H.
,
1966
, “
The Radial-Equilibrium Equation of Turbomachinery
,”
ASME J. Eng. Power
,
88
(
1
), pp.
1
12
.
12.
Baralon
,
S.
,
Eriksson
,
L.-E.
, and
Håll
,
U.
,
1999
, “
Evaluation of Higher-Order Terms in the Throughflow Approximation Using 3D Navier-Stokes Computations of a Transonic Compressor Rotor
,” Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery,
American Society of Mechanical Engineers
,
Indianapolis, IN
, p.
V001T03A013
.
13.
Thomas
,
J. P.
, and
Le’onard
,
O.
,
2010
, “
Towards a High Order Throughflow: Part I–Investigating the Effectiveness of a Harmonic Reconstruction for 3D Flows
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C, ASMEDC
,
Glasgow, UK
, June 14–18, pp.
831
841
.
14.
Thomas
,
J. P.
, and
Le’onard
,
O.
,
2010
, “
Towards a High Order Throughflow: Part II–Investigation of the Nonlinear Harmonic Method Coupled With an Immersed Boundary Method for the Modeling of the Circumferential Stresses
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C, ASMEDC
,
Glasgow, UK
,
June 14–18
, pp.
843
853
.
15.
Gui
,
X.
,
Zhu
,
F.
,
Wan
,
K.
, and
Jin
,
D.
,
2013
, “
Effects of Inlet Circumferential Fluctuation on the Sweep Aerodynamic Performance of Axial Fans/Compressors
,”
J. Thermal Sci.
,
22
(
5
), pp.
383
394
.
16.
Chang
,
H.
,
Zhu
,
F.
,
Jin
,
D.
, and
Gui
,
X.
,
2015
, “
Effect of Blade Sweep on Inlet Flow in Axial Compressor Cascades
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
103
111
.
17.
Xu
,
H.
,
Chang
,
H.
,
Jin
,
D.
, and
Gui
,
X.
,
2017
, “
Blade Bowing Effects on Radial Equilibrium of Inlet Flow in Axial Compressor Cascades
,”
Chin. J. Aeronaut.
,
30
(
5
), pp.
1651
1659
.
18.
Tang
,
M.
,
Jin
,
D.
, and
Gui
,
X.
,
2017
, “
Modeling and Numerical Investigation of the Inlet Circumferential Fluctuations of Swept and Bowed Blades
,”
J. Thermal Sci.
,
26
(
1
), pp.
1
10
.
19.
Zhang
,
J.
,
Jin
,
D.
,
Li
,
Z.
,
Wen
,
L.
,
Zhang
,
J.
,
Liu
,
X.
, and
Gui
,
X.
,
2023
, “
Experimental and Numerical Investigations of Inlet Circumferential Fluctuations in Swept Compressor Cascades
,”
J. Aerosp. Eng.
,
36
(
5
), p.
04023058
.
20.
Zhang
,
J.
,
Donghai
,
J.
, and
Xingmin
,
G.
,
2024
, “
Numerical Investigation and Modeling of Sweep Effects on Inlet Flow Field of Axial Compressor Cascades
,”
Chin. J. Aeronaut.
,
37
(
2
), pp.
296
308
.
21.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
22.
Simon
,
J.-F.
,
2007
, “
Contribution to Throughflow Modelling for Axial Flow Turbomachines
,” Ph.D. thesis,
University of Liege
,
Liege, Belgium
.
23.
Adamczyk
,
J. J.
,
1985
, “Model Equation for Simulating Flows in Multistage Turbomachinery,” ASME Paper No. 85-GT-226.
24.
Wu
,
C.-H.
,
1951
, “A General Through-Flow Theory of Fluid Flow With Subsonic or Supersonic Velocity in Turbomachines of Arbitrary Hub and Casing Shapes,” NACA, Technical Report NACA TN2302, https://ntrs.nasa.gov/citations/19930082962.
25.
Hall
,
E. J.
,
1998
, “
Aerodynamic Modelling of Multistage Compressor Flow Fields Part 2: Modelling Deterministic Stresses
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
212
(
2
), pp.
91
107
.
26.
Gao
,
L. M.
,
Xi
,
G.
,
Liu
,
B.
, and
Wang
,
S. J.
,
2007
, “
Reduced Passage-Averaged N-S Equations of the Three-Dimensional Flowfield in a Multi-stage Environment
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
221
(
3
), pp.
419
428
.
27.
Persico
,
G.
, and
Rebay
,
S.
,
2012
, “
A Penalty Formulation for the Throughflow Modeling of Turbomachinery
,”
Comput. Fluids
,
60
, pp.
86
98
.
28.
Yang
,
C.
,
Wu
,
H.
,
Du
,
J.
,
Zhang
,
H.
, and
Yang
,
J.
,
2022
, “
Full-Engine Simulation of Micro Gas Turbine Based on Time-Marching Throughflow Method
,”
Appl. Therm. Eng.
,
217
, p.
119213
.
29.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
.
30.
Ottavy
,
X.
,
Courtiade
,
N.
, and
Gourdain
,
N.
,
2012
, “
Experimental and Computational Methods for Flow Investigation in High-Speed Multistage Compressor
,”
J. Propul. Power.
,
28
(
6
), pp.
1141
1155
.
31.
He
,
L.
,
2021
, “
Averaging for High Fidelity Modeling–Toward Large Eddy Simulations in Multi-passage Multi-row Configurations
,”
ASME J. Turbomach.
,
143
(
2
), p.
021002
.
32.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.
33.
Spurr
,
A.
,
1980
, “
The Prediction of 3D Transonic Flow in Turbomachinery Using a Combined Throughflow and Blade-to-Blade Time Marching Method
,”
Int. J. Heat Fluid Flow
,
2
(
4
), pp.
189
199
.
34.
Jin
,
H.-l.
,
Jin
,
D.-h.
,
Li
,
X.-j.
, and
Gui
,
X.-m.
,
2010
, “
A Time-Marching Throughflow Model and Its Application in Transonic Axial Compressor
,”
J. Thermal Sci.
,
19
(
6
), pp.
519
525
.
35.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier
,
Amsterdam
.
36.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
37.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
J. Propul. Power
,
9
(
1
), pp.
74
82
.
38.
Sun
,
D.
,
Liu
,
X.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part II: Experiment
,”
J. Propul. Power
,
30
(
5
), pp.
1236
1247
.
39.
Dong
,
X.
,
Sun
,
D.
,
Li
,
F.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2018
, “
Effects of Stall Precursor-Suppressed Casing Treatment on a Low-Speed Compressor With Swirl Distortion
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091101
.
40.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor,” NASA Lewis Research Center, Cleveland, OH, Technical Report NASA-TP-1337, https://ntrs.nasa.gov/citations/19780025165.
41.
Trébinjac
,
I.
,
Charbonnier
,
D.
, and
Leboeuf
,
F.
,
2005
, “
Unsteady Rotor-Stator Interaction in High Speed Compressor and Turbine Stages
,”
J. Thermal Sci.
,
14
(
4
), pp.
289
297
.
42.
Reynolds
,
S. B.
,
Gorrell
,
S. E.
, and
Estevadeordal
,
J.
,
2012
, “
Particle Image Velocimetry Analysis on the Effect of Stator Loading on Transonic Blade-Row Interactions
,”
ASME J. Turbomach.
,
134
(
6
), p.
061012
.
You do not currently have access to this content.