Abstract

The elevated flow temperatures and pressures exiting gas turbine combustors affect the efficiency and durability of the high-pressure turbine stage. Understanding the effects that result from the upstream dilution and effusion flow interaction in creating the combustor exit profiles is important to advancing gas turbines. Understanding how common combustor features, such as dilution jets and effusion cooling, interact based on computational predictions guided the design of a non-reacting profile simulator capable of producing a wide range of non-uniform temperature profiles representative of those entering high-pressure turbines. The mechanical design of a new simulator device, which will be experimentally tested in the future, is presented in this paper along with computational predictions of flow and thermal fields. The simulator was designed for modular installation into the Steady Thermal Aero Research Turbine (START), which is a continuous-duration, steady-state turbine facility that houses a single-stage test turbine. Features of the simulator included interchangeable liner panels with multiple rows of dilution jets and wall effusion cooling to study various hole diameters and patterns. The dilution jets generate elevated turbulence intensities and tailor the temperature profiles in the radial and circumferential directions. The air mass flow distribution and source flow temperatures are independently controlled. To aid in the simulator design, computational fluid dynamics (CFD) simulations using Reynolds-averaged Navier–Stokes modeling were conducted with a two-level Design of Experiments (DOE) approach to determine a number of engine-representative target profiles with temperature shapes that are mid-radius peaked, outer-diameter peaked, inner-diameter peaked, and uniform. A sensitivity analysis of the CFD DOE results determined which factors significantly affected the profile shape so that the target profiles could be produced. The analysis indicated that the main contributor to the temperature profile shape at near-wall vane radial span locations of 0–15% and 85–100% was the injection temperature of the effusion flow. The main contributor at radial span locations of 15–40% and 60–85% was the injection temperature of the third-row dilution jets, and at the mid-radius location of 40–60% vane radial span, the main contributor was the diameter of the first-row dilution holes.

References

1.
Mattingly
,
J. D.
,
Heiser
,
W. H.
,
Boyer
,
K. M.
,
Haven
,
B. A.
, and
Pratt
,
D. T.
,
2018
,
Aircraft Engine Design
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
3.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.
4.
Schwab
,
J.
,
Stabe
,
R.
, and
Whitney
,
W.
,
1983
, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With a Nonuniform Inlet Radial Temperature Profile
,”
19th Joint Propulsion Conference
,
Seattle, WA
,
June 27–29
,
p. 1175
.
5.
Stabe
,
R.
,
Whitney
,
W.
, and
Moffitt
,
T.
,
1984
, “
Performance of a High-Work Low Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,”
20th Joint Propulsion Conference
,
Cincinnati, OH
,
May 14–17
,
p. 1161
.
6.
Cattafesta
,
L. N.
,
1988
, “
An Experimental Investigation of the Effects of Inlet Radial Temperature Profiles on the Aerodynamic Performance of a Transonic Turbine Stage
,”
Masters thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
7.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2006
, “
Effects of Combustor Exit Profiles on High Pressure Turbine Vane Aerodynamics and Heat Transfer
,”
Proceedings of ASME Turbo Expo
,
Barcelona, Spain
,
May 8–11
, pp.
285
295
.
8.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
,
2003
, “
The Design, Development, and Testing of a Non-uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
Proceedings of ASME Turbo Expo
,
Atlanta, GA
,
June 16–19
, pp.
273
280
.
9.
Koupper
,
C.
,
Bonneau
,
G.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulations of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
Proceedings of ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, pp.
1
12
.
10.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
11.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
,
2002
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
4
), pp.
193
202
.
12.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2004
, “
Developing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,”
Proceedings of ASME Turbo Expo
,
Vienna, Austria
,
June 14–17
, pp.
565
575
.
13.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2000
, “
Effect of Inlet Conditions on Endwall Secondary Flow
,”
J. Propuls. Power
,
16
(
3
), pp.
286
296
.
14.
Krishnamoorthy
,
V.
,
Pai
,
B. R.
, and
Sukhatme
,
S. P.
,
1988
, “
Influence of Upstream Flow Conditions on the Heat Transfer to Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
110
(
3
), pp.
412
416
.
15.
Van Fossen
,
G. J.
, and
Bunker
,
R. S.
,
2002
, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From an Advanced Dual-Annular Combustor
,”
Proceedings of ASME Turbo Expo
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
199
206
.
16.
Bishop
,
K.
, and
Allan
,
W.
,
2010
, “
Effects of Fuel Nozzle Condition on Gas Turbine Combustion Chamber Exit Temperature Distributions
,”
Proceedings of ASME Turbo Expo
,
Glasgow
,
June 14–18
, pp.
1
11
.
17.
Piotrowicz
,
M.
,
Flaszynski
,
P.
, and
Doerffer
,
P.
,
2018
, “
Effect of Hot Spot Location on Flow Structure in Nozzle Guide Vane
,”
J. Phys.: Conf. Ser.
,
1101
(
1
), p.
012025
.
18.
Goebel
,
S. G.
,
Abuaf
,
N.
,
Lovett
,
J. A.
, and
Lee
,
C.-P.
,
1993
, “
Measurements of Combustor Velocity and Turbulence Profiles
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
.
19.
Goldstein
,
R. J.
,
Lau
,
K. Y.
, and
Leung
,
C. C.
,
1983
, “
Velocity and Turbulence Measurements in Combustion Systems
,”
Exp. Fluids
,
1
(
2
), pp.
93
99
.
20.
Zimmerman
,
D. R.
,
1979
, “
Laser Anemometer Measurements at the Exit of a T-63-C20 Combustor
,” NASA Report No. NASA CR-159623.
21.
Bicen
,
A. F.
,
Tse
,
D.
, and
Whitelaw
,
J. H.
,
1988
, “
Flow and Combustion Characteristics of an Annular Combustor
,”
Combust. Flame
,
72
(
2
), pp.
175
192
.
22.
Moss
,
R.
, and
Moss
,
R.
,
1992
, “
The Effects of Turbulence Length Scale on Heat Transfer
,”
Ph.D. thesis
,
University of Oxford
,
Oxford
.
23.
Holdeman
,
J. D.
,
1993
, “
Mixing of Multiple Jets With a Confined Subsonic Crossflow
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
31
70
.
24.
Vakil
,
S. S.
, and
Thole
,
K. A.
,
2005
, “
Flow and Thermal Field Measurements in a Combustor Simulator Relevant to a Gas Turbine Aeroengine
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
257
267
.
25.
Shrager
,
A. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner—Part II: Flowfield Measurements
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011023
.
26.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2006
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.
27.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
7
), p.
031009
.
28.
Whitney
,
W. J.
,
Stabe
,
R. G.
, and
Moffitt
,
T. P.
,
1980
, “
Description of the Warm Core Turbine Facility and the Warm Annular Cascade Facility Recently Installed at the NASA Lewis Research Center
,” NASA Technical Memorandum 81562.
29.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propuls. Power
,
5
(
1
), pp.
64
71
.
30.
Haldeman
,
C. W.
,
1989
, “
An Experimental Study of Radial Temperature Profile Effects on Turbine Tip Shroud Heat Transfer
,”
Masters thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
31.
Shang
,
T.
,
1995
, “
Influence of Inlet Temperature Distortion on Turbine Heat Transfer
,”
Masters thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
32.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
,
2003
,
"The Design and Performance of a Transonic Flow Deswirling System: An Application of Current CFD Design Techniques Tested Against Model and Full Scale Experiments," Advances of CFD in Fluid Machinery Design
,
R. L.
Elder
,
A.
Tourlidakis
, and
M. K.
Yates
, eds.,
Professional Engineering Publishing
,
Suffolk, UK
, pp.
65
94
.
33.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Hogg
,
S. I.
,
Anderson
,
S. J.
, and
Smith
,
G. C.
,
1994
, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,”
Proceedings of ASME Turbo Expo
,
The Hague, The Netherlands
,
June 13–16
, pp.
1
9
.
34.
Haldeman
,
C.
,
Mathison
,
R.
, and
Dunn
,
M.
,
2004
, “
Design, Construction and Operation of a Combustor Emulator for Short-Duration High-Pressure Turbine Experiments
,”
40th Joint Propulsion Conference
,
Fort Lauderdale, FL
,
July 11–14
,
p. 3829
.
35.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2011
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.
36.
Barringer
,
M.
,
2001
, “
Design and Benchmarking of a Combustor Simulator Relevant to Gas Turbine Engines
,”
Masters thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
37.
Povey
,
T.
, and
Qureshi
,
I.
,
2008
, “
A Hot-Streak (Combustor) Simulator Suited to Aerodynamic Performance Measurements
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
122
(
6
), pp.
705
719
.
38.
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
A Combustor-Representative Swirl Simulator for a Transonic Turbine Research Facility
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
225
(
1
), pp.
737
748
.
39.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2014
, “
Design of a Non-Reacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME J. Eng Gas Turbines Power
,
136
(
8
), p.
081501
.
40.
Wolf
,
T.
,
Lehmann
,
K.
,
Willer
,
L.
,
Pahs
,
A.
,
Rößling
,
M.
, and
Dorn
,
L.
,
2017
, “
InterTurb: High-Pressure Turbine Rig for the Investigation of Combustor-Turbine Interaction
,”
Proceedings of ASME Turbo Expo
,
Charlotte, NC
,
June 26–30
, pp.
1
8
.
41.
OEM Engine Manufacturers
,
2022
, “Private Communication With OEM Engine Manufacturers Requesting Combustor Exit Profiles at the Vane Inlet.”
42.
Karalus
,
M.
,
Krishnamoorthy
,
N.
,
Reynolds
,
B.
, and
Mallouppas
,
G.
,
2019
, “
An Assessment of the Implicit Non-iterative PISO Solution Procedure for the Prediction of Combustor Performance
,”
Proceedings of ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
, pp.
1
9
.
43.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
Proceedings of ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
13
.
44.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Grover
,
E. A.
,
2019
, “
Scaling Sealing Effectiveness in a Stator-Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
45.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
Taylor and Francis
,
Philadelphia, PA
.
46.
Samuelsen
,
S.
,
2006
,
"Conventional Type Combustion," The Gas Turbine Handbook
,
U.S. Department of Energy-National Energy Technology Laboratory (NETL)
,
Morgantown, WV
, pp.
209
217
.
47.
Abbott
,
I. H.
,
von Doenhoff
,
A. E.
, and
Stivers
,
L. S.
, Jr.
,
1945
, “Summary of Airfoil Data, National Advisory Committee for Aeronautics Report No. 824,” Langley Memorial Aeronautical Laboratory.
48.
Rozman
,
M.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2024
, “
Strategies for High-Accuracy Measurements of Stage Efficiency for a Cooled Turbine
,”
ASME J. Turbomach.
,
146
(
10
), p.
101009
.
49.
Barringer
,
M.
,
2006
, “
Developing and Testing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,”
Ph.D. thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
50.
Creer
,
M. R.
, and
Thole
,
K. A.
,
2021
, “
Influence of Opposing Dilution Jets on Effusion Cooling
,”
Proceedings of ASME Turbo Expo
, Virtual, Online,
June 7–11
, pp.
2
11
.
51.
Siemens Industries Digital Software
,
2021
,
Simcenter STAR-CCM+, version 2021.3, Plano, TX
.
52.
Cha
,
C. M.
,
Ireland
,
P. T.
,
Denman
,
P. A.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels Are High at the Combustor-Turbine Interface
,”
Proceedings of ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, pp.
1371
1390
.
53.
Stitzel
,
S. M.
,
2001
, “
Flow Field Computations of Combustor-Turbine Interactions in a Gas Turbine Engine
,”
Masters thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
54.
Dunn
,
O. J.
, and
Clark
,
V. A.
,
1974
,
Applied Statistics: Analysis of Variance and Regression
,
Wiley
,
New York
.
You do not currently have access to this content.