Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To enhance film cooling effectiveness and reduce mixing loss, it is imperative to understand the dynamics of the unsteady vortex system and its interaction with the mainstream flow. In this study, a comprehensive experimental investigation was conducted to assess the film cooling effectiveness of a flat-plate cylindrical hole, along with the structure of the vortex system and the frequency of vortex shedding. This was achieved using a variety of techniques including pressure-sensitive paint (PSP), particle image velocimetry (PIV), hot-wire anemometry, and dynamic pressure sensors. To complement the experimental findings, a detailed analysis of the evolution mechanisms of unsteady coherent vortices was performed using the detached eddy simulation (DES) numerical method. The findings of the study revealed that the Kelvin–Helmholtz (K–H) shear vortex patterns on the windward side undergo a transition from clockwise to counterclockwise rotation with increasing blowing ratios. Large-scale vortex sheds from the K–H shear vortices, ultimately evolving into the hairpin vortex in the downstream region. Additionally, the study proposed two evolution models for the vortex systems in the film cooling flow field at different blowing ratios and elucidated the evolution mechanisms of counter-rotating vortex pair (CRVP). The results of the spectral analysis revealed a notable discrepancy in the slopes of the eigenfrequencies, which could be attributed to variations in the evolution patterns of the vortex systems.

References

1.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Keffer
,
J.
, and
Baines
,
W.
,
1963
, “
The Round Turbulent Jet in a Cross-Wind
,”
J. Fluid Mech.
,
15
(
5
), pp.
481
496
.
3.
Ramsey
,
J. W.
, and
Goldstein
,
R. J.
,
1971
, “
Interaction of a Heated Jet With a Deflecting Stream
,”
ASME J. Heat Mass Transfer
,
93
(
4
), pp.
365
372
.
4.
Kamotani
,
Y.
, and
Greber
,
I.
,
1974
, “Experiments on Confined Turbulent Jets in Cross Flow,” NASA Contractor Reports.
5.
Andreopoulos
,
J.
,
1985
, “
On the Structure of Jets in a Crossflow
,”
J. Fluid Mech.
,
157
, pp.
163
197
.
6.
Kim
,
S. I.
, and
Hassan
,
I.
,
2008
, “
Unsteady Heat Transfer Analysis of a Film Cooling Flow
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 7–10
.
7.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
8.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
9.
Kelso
,
R.
,
Lim
,
T.
, and
Perry
,
A.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
10.
Perry
,
A. E.
,
Kelso
,
R. M.
, and
Lim
,
T. T
,
1993
, “
Topological Structure of a Jet in a Cross Flow
,”
Computational and Experimental Assessment of Jets in Cross Flow
,
Winchester, UK
. November, pp.
12
13
.
11.
Lim
,
T.
,
New
,
T. H.
, and
Luo
,
S.
,
2001
, “
On the Development of Large-Scale Structures of a Jet Normal to a Cross Flow
,”
Phys. Fluids
,
13
(
3
), pp.
770
775
.
12.
New
,
T.
,
Lim
,
T.
, and
Luo
,
S.
,
2003
, “
Elliptic Jets in Cross-Flow
,”
J. Fluid Mech.
,
494
, pp.
119
140
.
13.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.
14.
Zhang
,
J.
,
Zhang
,
S.
,
Wang
,
C.
, and
Tan
,
X.
,
2022
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.
15.
Li
,
W.
,
Shi
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
On the Flow Structures and Adiabatic Film Effectiveness for Simple and Compound Angle Hole With Varied Length-to-Diameter Ratio by Large Eddy Simulation and Pressure-Sensitive Paint Techniques
,”
ASME J. Heat Mass Transfer
,
139
(
12
), p.
122201
.
16.
Haven
,
B. A.
,
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
17.
Camussi
,
R.
,
Guj
,
G.
, and
Stella
,
A.
,
2002
, “
Experimental Study of a Jet in a Crossflow at Very low Reynolds Number
,”
J. Fluid Mech.
,
454
, pp.
113
144
.
18.
Fawcett
,
R. J.
,
Wheeler
,
A. P. S.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
.
19.
Giovanna
,
B.
,
Silvia
,
R.
,
Alessandro
,
A.
,
Claudio
,
M.
, and
Luca
,
C.
,
2013
, “
Effects of Injection Conditions and Mach Number on Unsteadiness Arising Within Coolant Jets Over a Pressure Side Vane Surface
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1220
1230
.
20.
Agarwal
,
S.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Odier
,
N.
, and
Dombart
,
J.
,
2021
, “
Analysis of the Unsteady Flow Field Inside a Fan-Shaped Cooling Hole Predicted by Large Eddy Simulation
,”
ASME J. Turbomach.
,
143
(
3
), p.
031011
.
21.
Li
,
G.
,
Zhang
,
H.
, and
Yan
,
W.
,
2019
, “
Control of the Coherent Structure Dynamics of a Film Cooling Flow by Plasma Aerodynamic Actuation
,”
Int. J. Heat Mass Transfer
,
137
, pp.
434
445
.
22.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2007
, “
Effect of Jet Pulsing on Film Cooling—Part I: Effectiveness and Flow-Field Temperature Results
,”
ASME J. Turbomach.
,
129
(
2
), pp.
232
246
.
23.
Krothapalli
,
A.
,
Lourenco
,
L.
, and
Buchlin
,
J.-M.
,
1990
, “
Separated Flow Upstream of a Jet in a Crossflow
,”
AIAA J.
,
28
(
3
), pp.
414
420
.
24.
Wang
,
Q.
,
Su
,
X.
, and
Yuan
,
X.
,
2022
, “
Assessment of the Turbulence Characteristics of Shaped Film Cooling Hole With Scale Resolving Simulation
,”
J. Therm. Sci.
,
31
(
1
), pp.
47
61
.
25.
Ma
,
L.
,
Wang
,
M.
,
Chen
,
J.
,
Su
,
H.
,
Wang
,
J.
, and
Yao
,
R.
,
2023
, “
Experimental and Numerical Investigations on Transient Film Cooling Performances With Trenched Holes Considering Mainstream Oscillation
,”
Int. J. Heat Mass Transfer
,
218
, p.
124799
.
26.
Xie
,
X.
,
Ma
,
A.
,
Zhao
,
H.
,
Li
,
X.
, and
Wu
,
X.
,
2023
, “
Experimental Investigation and Analysis on the Cross Flow Characteristics Over Inline Tube Bundles With S/D = 1.875
,”
Int. J. Heat Mass Transfer
,
203
, p.
123800
.
27.
Yu
,
F.
, and
Yavuzkurt
,
S
,
2018
, “
Simulation of Film Cooling Heat Transfer and Simulation Improvement With a Modified DES Turbulence Model
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Jan. 15
, p. V08AT10A039.
28.
Kim
,
S. I.
, and
Hassan
,
I.
,
2010
, “
Unsteady Simulations of a Film Cooling Flow From an Inclined Cylindrical Jet
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
145
156
.
29.
Du
,
Q.
,
Xu
,
G.
,
Xu
,
Q.
, and
Wang
,
P.
,
2022
, “
Detached Eddy Simulation of the Unsteady Flow and Film Cooling Characteristics of an Endwall With an Interrupted Slot
,”
ASME J. Turbomach.
,
144
(
10
), p.
101012
.
30.
Effendy
,
M.
,
Yao
,
Y.
,
Yao
,
J.
, and
Marchant
,
D.
,
2019
, “
Detached Eddy Simulation of Blade Trailing-Edge Cutback Cooling Performance at Various Ejection Slot Angles
,”
Int. J. Heat Fluid Flow
,
80
, p.
108487
.
31.
Effendy
,
M.
,
Yao
,
Y.
,
Yao
,
J.
, and
Marchant
,
D.
,
2016
, “
DES Study of Blade Trailing Edge Cutback Cooling Performance With Various Lip-Thicknesses
,”
Appl. Therm. Eng.
,
99
(
C
), pp.
434
445
.
32.
Wang
,
Y.
,
Liu
,
C.
,
Fu
,
Z.
,
Li
,
Y.
, and
Zhu
,
H.
,
2023
, “
Improvement of Film Cooling Design for Turbine Vane Leading Edge Considering Combustor Outflow
,”
J. Therm. Sci.
,
33
(
1
), pp.
311
327
.
33.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows
,”
24th Fluid Dynamics Conference
,
Orlando, FL
,
July 6–9
.
34.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
35.
Jovanovic
,
M. M.
,
2006
, “
Film Cooling Through Imperfect Holes
,” Ph.D. thesis, Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, Netherlands.
You do not currently have access to this content.