Abstract

The combination of designing film cooling and spraying thermal barrier coatings (TBC) is widely used to protect turbine components and improve their durability in extremely terrible operation conditions. Nevertheless, one obstacle to the synergy of both is that partial blockage of film coolant delivery holes (referred to as film holes in this article) is commonly observed in realistic turbine cascades when the TBC material is applied to the components, leading to a significant reduction in the coolant flow area. In the double-row discrete film hole layouts, endwall profiles may lead to variations between upstream film hole blockage (row 1) and downstream film hole blockage (row 2). Therefore, various blocked film hole configurations of this double-row discrete film hole layout are considered in this article, specifically common holes (CH), upstream blocked holes (UBH + DCH), downstream blocked holes (UCH + DBH), and fully blocked holes (FBH). In addition, the aerothermal performance with different endwall profiles (simplified flat endwall and convergent contoured endwall) was comparatively analyzed, aiming to present a relatively comprehensive evaluation of aerothermal performance discrepancy between simplified flat endwall and convergent contoured endwall and provide more insightful references for industrial designers. Based on the double-coolant temperature model, the film hole discharge coefficient (Cd), endwall film cooling effectiveness (η), secondary film cooling (phantom cooling) effectiveness of vane pressure side (PS), and vane cascade total pressure loss coefficient (TPLC) were experimentally and numerically studied at the design coolant supply pressure condition. Results indicated that partial film hole blockage is pernicious to coolant flowrate, endwall film cooling, and vane PS phantom cooling performances, and thus, the geometric defects of film holes due to TBC application should be adequately considered as part of the film cooling layout designs. Compared to the simplified flat endwall, the deterioration of aerothermal performance is marginal for the convergent contoured endwall. In addition, a remarkable decay of endwall film cooling effectiveness (10.9% in magnitude against CH configuration, approximately twice that of the UBH + DCH configuration), was observed at the UCH + DBH configuration for the convergent contoured endwall, which presented an opposite trend for the simplified flat endwall. This indicates that the downstream film hole blockage should be paid more attention in this double-row discrete film hole layout. The corresponding study findings obtained from studies on simplified flat endwall should be further evaluated for their applicability to those on realistic turbine cascades. Due to the weakened overall interaction intensity between the coolant and the mainstream, the TPLC was found to decrease by 1.2–2.3% for the simplified flat endwall and less than 0.7% for the convergent contoured endwall. Overall, endwall contouring can play a positive role in mitigating the adverse impacts of partial film hole blockage caused by TBC materials deposition and increase the robustness of the vane cascade aerodynamic performance against the geometric defects of film holes.

References

1.
National Academies of Sciences, Division on Engineering, Physical Sciences, Aeronautics, Space Engineering Board and Committee on Advanced Technologies for Gas Turbines
,
2020
,
Advanced Technologies for Gas Turbines
,
National Academies Press
,
Washington, DC
.
2.
Han
,
J. C.
,
Datta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
3.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME. J. Turbomach.
,
129
(
2
), pp.
193
201
.
4.
Krishna Anand
,
V. G.
, and
Parammasivam
,
K. M.
,
2021
, “
Thermal Barrier Coated Surface Modifications for Gas Turbine Film Cooling: A Review
,”
J. Therm. Anal. Calorim.
,
146
(
2
), pp.
545
580
.
5.
Bunker
,
R. J.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
, Paper No. GT2000-0244.
6.
Thomas
,
M.
, and
Povey
,
T.
,
2017
, “
Improving Turbine Endwall Cooling Uniformity by Controlling Near-Wall Secondary Flows
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
14
), pp.
2689
2705
.
7.
Burdett
,
T. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2023
, “
Optimized Film Cooling Flow on a Contoured Endwall Within a Transonic Annular Cascade
,”
ASME. J. Thermal Sci. Eng. Appl.
,
15
(
4
), p.
041011
.
8.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
, and
Feng
,
Z.
,
2023
, “
Film Cooling on Turbine Vane Endwalls With Different Inlet Cooling Configurations: Experimental and Computational Results
,”
ASME. J. Turbomach.
,
145
(
10
), p.
101010
.
9.
Chowdhury
,
N. H. K.
,
Shiau
,
C.
,
Han
,
J.
,
Xu
,
H.
, and
Fox
,
M.
,
2017
, “
Film Cooling Effectiveness Comparison on Turbine Vane Endwall With Cluster Configurations Using PSP Measurement Technique
,”
Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
, Paper No. IMECE2017-72157.
10.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems
,”
ASME J. Turbomach.
,
139
(
12
), p.
121002
.
11.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Derdichizzi
,
A.
,
2005
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
Reno, NV
, Paper No. GT2005-68544.
12.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.
13.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2022
, “
Turbine Vane Endwall Film Cooling and Pressure Side Phantom Cooling Performances With Upstream Coolant Flow at Various Injection Angles
,”
ASME. J. Thermal Sci. Eng. Appl.
,
14
(
11
), p.
111014
.
14.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
666
.
15.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2010
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Vane: Adiabatic Effectiveness Measurements
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
, Paper No. GT2010-22968.
16.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2009
, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
, Paper No. GT2009-60236.
17.
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Simon
,
T.
,
2019
, “
Influence of Endwall 2D Contouring on Endwall Adiabatic Cooling Effectiveness and Aerodynamic Performance
,”
Int. J. Heat Mass Transfer
,
137
, pp.
690
702
.
18.
Du
,
K.
,
Jia
,
Y.
,
Liu
,
C.
, and
Sunden
,
B.
,
2024
, “
Non-Axisymmetric Endwall Film Cooling Characteristics Considering the Influences of Cylindrical Holes and Laidback Fan-Shaped Holes
,”
Int. J. Heat Mass Transfer
,
225
, p.
125403
.
19.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2021
, “
The Effects of Axisymmetric Convergent Contouring and Blowing Ratio on Endwall Film Cooling and Vane Pressure Side Surface Phantom Cooling Performance
,”
ASME. J. Eng. Gas Turbines Power
,
144
(
2
), p.
021020
.
20.
Wang
,
F. Q.
,
Pu
,
J.
,
Wang
,
J. H.
, and
Xia
,
W. D.
,
2021
, “
Numerical Investigation of Effects of Blockage, Inclination Angle, and Hole-Size on Film Cooling Effectiveness at Concave Surface
,”
ASME J. Turbomach.
,
143
(
2
), p.
021007
.
21.
Na
,
S.
,
Cunha
,
F. J.
,
Chyu
,
M. K.
, and
Shih
,
T. I. P.
,
2006
, “
Effects of Coating Blockage and Deposit on Film-Cooling Effectiveness and Surface Heat Transfer
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Paper No. 2006-0024.
22.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
23.
Chen
,
X.
,
Wang
,
Y.
,
Long
,
Y.
, and
Weng
,
S.
,
2021
, “
Effect of Partial Blockage on Flow and Heat Transfer of Film Cooling With Cylindrical and Fan-Shaped Holes
,”
Int. J. Therm. Sci.
,
164
, p.
106866
.
24.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME. J. Turbomach.
,
129
(
3
), pp.
599
607
.
25.
Bai
,
B.
,
Li
,
Z.
,
Zhang
,
K.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2023
, “
Effects of Hole Blockage on Endwall Film Cooling and Vane Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME. J. Eng. Gas Turbines Power
,
145
(
4
), p.
041001
.
26.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.
27.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling: Part 2—Effect of Combustor-NGV Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.
28.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
29.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
J. Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
31.
Coleman
,
H. W.
,
Brown
,
K. H.
, and
Steele
,
W. G.
,
1995
, “
Estimating Uncertainty Intervals for Linear Regression
,”
33rd Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Paper No. 95-0796.
32.
Xue
,
S.
,
2012
, “
Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade With High Freestream Turbulence
,”
Ph.D. thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
33.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.
34.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2022
, “
Effects of Upstream Step Geometries on Endwall Film Cooling and Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121005
.
35.
Li
,
Z.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.
36.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2005
, “
Effects of Mid-passage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
Reno, NV
, Paper No. GT2005-6890.
37.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
, Paper No. GT2016-57763.
38.
Huang
,
K.
,
Zhang
,
J.
,
Tan
,
X.
, and
Shan
,
Y.
,
2018
, “
Experimental Study on Film Cooling Performance of Imperfect Holes
,”
Chinese J. Aeronaut.
,
31
(
6
), pp.
1215
1221
.
39.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME. J. Turbomach.
,
120
(
3
), pp.
557
563
.
You do not currently have access to this content.