Abstract

This paper describes the use of the free streamline approach to determine flows in fully separated cascades, and to thereby provide a rational basis for estimating the performance of axial turbomachinery at severely off-design conditions. On the assumption of two-dimensional, incompressible flow, the free streamlines that bound the separated region are determined using the hodograph method, in which the methods of complex analysis are used to define a tractable numerical problem. The resulting jet-wake flow profile at cascade exit is then presumed to undergo mixing at constant area, from which performance parameters for the cascade can be determined. The proposed method is verified by comparison against flat plate cascade solutions and by checks against momentum conservation. Validation of the free streamline approach is carried out by comparison against several cascade configurations for which experimental data and simulation results are available. In general, the predictions based upon the present theoretical model are found to be good, especially for negative incidences such as those that occur in the compressor section of an engine operating at sub-idle conditions. This suggests that the present approach can be used in the estimation of turbomachinery performance maps far from the design point, especially during early design phases.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zachos
,
P. K.
,
Pachidis
,
V.
,
Charnley
,
B.
, and
Pilidis
,
P.
,
2009
, “Flowfield Investigation of a Compressor Cascade at High Incidence. Part I – Pneumatic Probe Measurements,” ASME Paper No. GT2009-59906.
2.
Zachos
,
P. K.
,
Pachidis
,
V.
,
Charnley
,
B.
, and
Pilidis
,
P.
,
2009
, “Flowfield Investigation of a Compressor Cascade at High Incidence. Part II – Numerical Analysis,” ASME Paper No. GT2009-59908.
3.
Zachos
,
P. K.
,
Ruelke
,
C.
,
Pachidis
,
V.
, and
Singh
,
R.
,
2011
, “Compressor Blade Modeling Under Highly Negative Incidence,” Paper No. GT2011-46621.
4.
Ilana
,
E.
,
Grech
,
N.
,
Zachos
,
P. K.
, and
Pachidis
,
V.
,
2013
, “A Sub-Idle Compressor Characteristic Generation Method With Enhanced Physical Background,” ASME Paper No. GT2013-94368.
5.
Zachos
,
P. K.
,
Aslanidou
,
I.
,
Pachidis
,
V.
, and
Singh
,
R.
,
2011
, “
Axial Compressor Aerodynamics Under Sub-Idle Conditions
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081702
.
6.
Kurzke
,
J.
,
1996
, “How to Get Component Maps for Aircraft Gas Turbine Performance Calculations,” ASME Paper No. 96-GT-164.
7.
Riegler
,
C.
,
Bauer
,
M.
, and
Kurzke
,
J.
,
2001
, “
Some Aspects of Modeling Compressor Behavior in Gas Turbine Performance Calculations
,”
ASME J. Turbomach.
,
123
(
2
), pp.
372
378
.
8.
Gaudet
,
S. R.
, and
Gauthier
,
J. E. D.
,
2007
, “A Simple Sub-Idle Component Map Extrapolation Method,” ASME Paper No. GT2007-27193.
9.
Righi
,
M.
,
Ferrer-Vidal
,
L. E.
,
Pachidis
,
V.
, and
Tunstall
,
R. J.
,
2018
, “
An Enhanced Compressor Sub-Idle Map Generation Method
,” In Proceedings of GPPS Forum 2018, Zürich, Switzerland, Jan. 10–12, Paper No. GPPS-2018-0004.
10.
Ferrer-Vidal
,
L. E.
,
Pachidis
,
V.
, and
Tunstall
,
R. J.
,
2021
, “
Generating Axial Compressor Maps to Zero Speed
,”
Proc. Inst. Mech. Engrs., Part A: J. Power Energy
,
235
(
5
), pp.
956
975
.
11.
Helmholtz
,
H.
,
1868
, “
On Discontinuous Fluid Motions
,”
Phil. Mag.
,
36
(
4
), pp.
337
346
.
12.
Kirchhoff
,
G.
,
1869
, “
Zur Theorie Freir Flüssigkeitsstrahlen
,”
J. Reine Angew. Math.
,
70
, pp.
289
298
.
13.
Birkhoff
,
G.
, and
Zarantonello
,
E. H.
,
1957
,
Jets, Wakes and Cavities
,
Academic Press
,
New York
.
14.
Brennen
,
C. E.
,
2014
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
15.
Betz
,
A.
, and
Petersohn
,
E.
,
1932
, Application of the Theory of Free Jets. NACA Technical Memorandum No. NACA-TM-667.
16.
Cornell
,
W. G.
,
1954
, “
The Stall Performance of Cascades
,” In Proceedings of the Second U. S. National Conference of Applied Mechanics,
Ann Arbor
,
MI
, pp.
705
713
.
17.
Kurzke
,
J.
,
2019
, “
Generating Compressor Maps to Simulate Starting and Windmilling
,” In Proceedings of the 24th Conference of the International Society of Air Breathing Engines, Canberra, Australia, Sept. 22–27, Paper No. ISABE-2019-24299.
18.
Furuya
,
O.
,
1975
, “
Exact Supercavitating Cascade Theory
,”
ASME J. Fluids Eng.
,
97
(
4
), pp.
419
428
.
19.
Glauert
,
H.
,
1926
,
The Elements of Aerofoil and Airscrew Theory
,
Cambridge University Press
,
Cambridge, UK
.
20.
Carrier
,
G. F.
,
Krook
,
M.
, and
Pearson
,
C. E.
,
1966
,
Functions of a Complex Variable: Theory and Technique
,
McGraw-Hill
,
New York
.
21.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
1994
,
Tables of Integrals, Series and Products
, 5th ed.,
Academic Press
,
Boston, MA
.
22.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1992
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed.
Cambridge University Press
,
Cambridge, UK
.
23.
Longley
,
J. P.
,
2007
, “Calculating Stall and Surge Transients,” ASME Paper No. GT2007-27378.
24.
Koff
,
S. G.
, and
Greitzer
,
E. M.
,
1984
, “Stalled Flow Performance for Axial Compressors: I – Axisymmetric Characteristic,” ASME Paper No. 84-GT-93.
25.
Yocum
,
A. M.
, and
O’Brien
,
W. F.
,
1992
, “Separated Flow in a Low Speed Two-Dimensional Cascade. Part I – Flow Visualization and Time-Mean Velocity Measurements,” ASME Paper No. 92-GT-356.
26.
Yocum
,
A. M.
, and
O’Brien
,
W. F.
,
1992
, “Separated Flow in a Low Speed Two-Dimensional Cascade. Part II – Cascade Performance,” ASME Paper No. 92-GT-357.
27.
Yocum
,
A. M.
, and
O’Brien
,
W. F.
,
1992
, “Loss Production in the Wake of a Simulated Subsonic Turbine Blade,” ASME Paper No. 96-GT-421.
28.
Hong
,
K. R.
,
Song
,
S. J.
, and
Hong
,
Y. S.
,
1998
, “
The Effects of Incidence on an Axial Compressor Cascade Profile Loss
,” In Proceedings of the Korean Society for Aeronautical and Space Sciences Conference, pp.
218
222
.
29.
Lee
,
S.
,
Kim
,
H. J.
, and
Runchal
,
A.
,
2004
, “
Large Eddy Simulation of Unsteady Flows in Turbomachinery
,”
Proc. Inst. Mech. Engrs., Part A: J. Power and Energy
,
218
(
7
), pp.
463
475
.
30.
Holloway
,
P. R.
,
Knight
,
G. L.
,
Koch
,
C. C.
, and
Shaffer
,
S. J.
,
1982
, Energy Efficient Engine High Pressure Compressor Detail Design Report, NASA Contractor Report NASA-CR-165558.
31.
Ferrer-Vidal
,
L. E.
,
Iglesias-Perez
,
A.
, and
Pachidis
,
V.
,
2020
, “
Characterization of Axial Compressor Performance at Locked Rotor and Torque-Free Windmill Conditions
,”
Aerosp. Sci. Technol.
,
101
, p.
105846
.
32.
Ferrer-Vidal
,
L. E.
,
Schneider
,
M.
,
Allegretti
,
A.
, and
Pachidis
,
V.
,
2019
, “
A Loss and Deflection Model for Compressor Blading at High Negative Incidence
,”
ASME J. Turbomach.
,
141
(
12
), p.
121001
.
33.
Righi
,
M.
,
Ferrer-Vidal
,
L. E.
,
Allegretti
,
A.
, and
Pachidis
,
V.
,
2019
, “
Low-Order Models for the Calculation of Compressor Sub-Idle Characteristics
,” In Proceedings of the 24th Conference of the International Society of Air Breathing Engines, Canberra, Australia, Sept. 22–27, Paper No. ISABE-2019-24197.
34.
Scholz
,
N.
,
1977
, Aerodynamics of Cascades. Technical Report AGARD-AG-220.
You do not currently have access to this content.