Abstract

Particle deposition is a common phenomenon in a turbine cascade. It can change the surface condition, which influences the flow and heat transfer. It is very important to accurately predict particle deposition and surface condition changes. In this study, a combined particle deposition algorithm is proposed based on the critical viscosity deposition model and roughness height prediction. It couples the influence of surface roughness into the particle deposition. The combined model newly developed is employed for the particle deposition. Its effects in a turbine cascade with the combined model are discussed. The results show the deposition is mainly concentrated on the leading edge of the cascade and the pressure side. Small diameter particles are mainly deposited on the suction side and the large ones are mainly deposited on the pressure side due to inertial effect. The deposition number increases with the particle diameter. As time goes by, more particles deposit on the wall, which builds roughness height and shows a spreading characteristic. Heat transfer is enhanced by the surface roughness and flow characteristics including separation vortex and leakage vortex, in which flow pattern may dominate the effect. In addition, the separation vortex and leakage vortex have a significant effect on the deposition distribution, especially for small diameter particles.

References

1.
Zhang
,
C.
,
Lin
,
Y. Z.
,
Xu
,
H. S.
, and
Xu
,
Q. H.
,
2014
, “
Development Status and Level of Low Emissions Combustor Technologies for Civil Aero-Engine
,”
Acta Aeronaut. Astronaut. Sin.
,
35
(
2
), pp.
332
350
.
2.
Blevins
,
L.
,
2003
, “
Particulate Matter Emitted From Aircraft Engines
,”
AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years
,
Dayton, OH
,
July 14–17
.
3.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion-Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
4.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
5.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2012
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041020
.
6.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes: Part I—Experimental Characteristics of Four Coal Ash Types
,” ASME Paper No. GT2011-45894.
7.
Wenglarz
,
R. A.
,
1992
, “
An Approach for Evaluation of Gas Turbine Deposition
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
230
234
.
8.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.
9.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2001
, “
Particles Trajectories Through an Axial Fan and Performance Degradation Due to Sand Ingestion
,” ASME Paper No. 2001-GT-0497.
10.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
11.
Ai
,
W.
,
Murray
,
N.
, and
Fletcher
,
T. H.
,
2008
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME Turbo Expo: Power for Land, Sea, & Air
, Paper No. GT2008-50901.
12.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2001
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,” ASME Paper No. GT2004-53324.
13.
Smith
,
C.
,
Barker
,
B.
,
Clum
,
C.
, and
Bons
,
J. P.
,
2010
, “
Deposition in a Turbine Cascade With Combusting Flow
,” ASME Paper No. GT2010-22855.
14.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Micro-Spheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
15.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hot Path
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.
16.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.
17.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
An Energy-Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.
18.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
19.
Pan
,
J.
,
Wang
,
J.
,
Chen
,
S.
,
Zhang
,
X.
, and
Liu
,
S.
,
2018
, “
Numerical Study of Inlet Reynolds Number in Fine Particles Deposition Processes in a Flue Gas Turbine
,”
Powder Technol.
,
339
, pp.
506
520
.
20.
Forsyth
,
P. R.
,
Gillespie
,
D. R. H.
, and
McGilvray
,
M.
,
2017
, “
Development and Applications of a Coupled Particle Deposition–Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022603
.
21.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2018
, “
Modeling Deposition in Turbine Cooling Passages With Temperature Dependent Adhesion and Mesh Morphing
,” ASME Paper No. GT2018-76251.
22.
Casari
,
N.
,
Pinelli
,
M.
, and
Suman
,
A.
,
2018
, “
An Innovative Approach Towards Fouling Modeling: Microscale Deposition Pattern and Its Effect on the Flow Field
,”
ASME Turbo Expo: Turbine Technical Conference & Exposition.
,
Oslo, Norway
,
June 11–15
.
23.
Friso
,
R.
,
Zanini
,
N.
,
Suman
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2022
, “
A Microscale-Based Methodology to Predict the Performance Degradation in Turbomachinery Due to Particle Deposition
,”
ASME Turbo Expo: Turbine Technical Conference & Exposition
,
Rotterdam, Netherlands
,
June 13–17
.
24.
Paul
,
S.
,
Tafti
,
D.
, and
Yu
,
K.
,
2019
, “
A Multi-phase Computational Framework for Deposit Formation and Growth
,”
ASME Turbo Expo: Turbo-Machinery Technical Conference and Exposition
, Paper No. GT2019-90266.
25.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
26.
Casaday
,
B. P.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Numerical Investigation of Ash Deposition on Nozzle Guide Vane End-Walls
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032001
.
27.
Wang
,
H.
,
Li
,
J.
, and
Guo
,
H.
,
2022
, “
A Method for Roughness Height Prediction by Particle Deposition and Its Effect on Flow and Heat Transfer in a Turbine Cascade
,”
Numer. Heat Transfer, Part A
83
(
10
), pp.
1080
1094
.
28.
Ansys Fluent Theory Guide and User’s Guide
.
29.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
30.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,”
J. Appl. Phys.
,
3
. ark:/67531/metadc63009
31.
Tafti
,
D. K.
, and
Sreedharan
,
S. S.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,” ASME Paper No. GT2010-23655.
32.
Barker
,
B.
,
Casaday
,
B.
,
Shankara
,
P.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2011
, “
Coal Ash Deposition on Nozzle Guide Vanes: Part II—Computational Modeling
,”
ASME Turbo Expo: Turbine Technical Conference & Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
1757
1767
.
33.
Crosby
,
J. M.
,
2007
, “
Particle Size, Gas Temperature, and Impingement Cooling Effects on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
Master’s thesis
,
Brigham Young University
,
Provo, UT
.
34.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
,
9
(
2
), pp.
209
283
.
35.
Schlichting
,
H.
, and
Gersten
,
K.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
36.
Cai
,
L.
,
Xi
,
J.
, and
Gao
,
S.
,
2020
, “
Numerical Research Progress of Particle Deposition Characteristics on Gas Turbine Blade Surface
,”
J. Eng. Phys. Thermophys.
,
41
(
2
), p.
12
.
37.
Bons
,
J. P.
,
2002
, “
ST and CF Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
You do not currently have access to this content.