Abstract

As aeroengine designers seek to raise turbine entry temperatures for greater thermal efficiencies, novel cooling schemes are required to ensure that components can survive in increasingly hotter environments. By utilizing a combination of impingement cooling, pin-fin cooling, and effusion cooling, double-wall effusion cooling is well equipped to achieve the high metal cooling effectiveness required for such challenges while keeping coolant consumption at an acceptably low level. However, this high performance can drop off within the variability of common manufacturing tolerances, which can also expose cooling schemes to issues such as hot gas ingestion. This paper uses an experimentally validated low-order flow network model (LOM) to assess the cooling performance of a double-wall effusion cooling scheme employed in a high-pressure turbine nozzle guide vane, subject to the variability of geometric parameters set by their manufacturing tolerances. The relative significance of each geometric parameter is examined by varying it individually and comparing the effects on the cooling performance. A Monte Carlo analysis is then conducted to assess the likelihood of performance variation for a baseline design. Finally, multiple optimization studies are conducted for the cooling scheme, with the simultaneous objectives of reducing coolant usage and maximizing the design tolerances to reduce manufacturing cost, all while maintaining acceptable metal cooling effectiveness and backflow margins.

References

1.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
p. V05BT22A015
.
2.
van de Noort
,
M.
,
Murray
,
A. V.
, and
Ireland
,
P. T.
,
2022
, “
Low Order Heat & Mass Flow Network Modelling for Quasi-Transpiration Cooling Systems
,”
ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
,
June 13–17
,
p. V06BT15A012
.
3.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
p. V001T51A001
.
4.
Courtis
,
M.
, and
Ireland
,
P. T.
,
2022
, “
Influence of Porosity on Double-Walled Effusion-Cooled Systems for Gas Turbine Blades
,”
ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
,
June 13–17
,
p. V06AT12A009
.
5.
Wambersie
,
A.
,
Wong
,
H.
,
Ireland
,
P. T.
, and
Mayo
,
I.
,
2021
, “
Experiments of Transpiration Cooling Inspired Panel Cooling on a Turbine Blade Yielding Film Effectiveness Levels Over 95%
,”
Int. J. Turbomach. Propuls. Power
,
6
(
2
), p.
16
.
6.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
7.
Dow
,
E. A.
, and
Wang
,
Q.
,
2014
, “
Simultaneous Robust Design and Tolerancing of Compressor Blades
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
,
p. V02BT45A007
.
8.
Knisely
,
B.
,
Berdanier
,
R.
,
Wagner
,
J.
,
Thole
,
K.
,
Arisi
,
A.
, and
Haldeman
,
C.
,
2023
, “
Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades
,”
ASME. J. Turbomach.
,
145
(
6
), p.
061016
.
9.
Lee
,
W.
,
Dawes
,
W.
,
Coull
,
J.
, and
Goenaga
,
F.
,
2018
, “
The Impact of Manufacturing Variability on High Pressure Turbine Profile Loss
,”
AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
.
10.
Camci
,
C.
, and
Arts
,
T.
,
1991
, “
Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film-Cooled Transonic Turbine Blade
,”
ASME J. Turbomach.
,
113
(
3
), pp.
493
501
.
11.
Benabed
,
M.
,
Azzi
,
A.
, and
Jubran
,
B.
,
2010
, “
Numerical Investigation of the Influence of Incidence Angle on Asymmetrical Turbine Blade Model Showerhead Film Cooling Effectiveness
,”
Heat Mass Transfer
,
46
(
8–9
), pp.
811
819
.
12.
Lee
,
S.
,
Rhee
,
D.
, and
Yee
,
K.
,
2016
, “
Optimal Arrangement of the Film Cooling Holes Considering the Manufacturing Tolerance for High Pressure Turbine Nozzle
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
p. V02CT45A029
.
13.
Kang
,
Y.
,
Park
,
S.
,
Jeong
,
J.
,
Kim
,
G. M.
, and
Kwak
,
J. S.
,
2022
, “
The Effects of Manufacturing Tolerance on the Film Cooling Effectiveness of a Laidback Fan-Shaped Hole
,”
J. Mech. Sci. Technol.
,
36
,
4
, pp.
2127
2137
.
14.
Panizza
,
A.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Uncertainty Quantification of Hot Gas Ingestion for a Gas Turbine Nozzle Using Polynomial Chaos
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
.
15.
Rose
,
J. R.
,
1978
,
NASA TM-73774: FLOWNET: A Computer Program for Calculating Secondary Flow Conditions in a Network of Turbomachinery
,
NASA
,
Cleveland, Ohio
.
16.
Ebenhoch
,
G.
, and
Speer
,
T. M.
,
1996
, “
Simulation of Cooling Systems in Gas Turbines
,”
ASME. J. Turbomach.
,
118
(
2
), pp.
301
306
.
17.
Jin
,
H.
,
Riddle
,
A.
, and
Cooke
,
L.
,
2008
, “
A Compressible Flow Network Analysis for Design Upgrade of Industrial Aeroderivative High Pressure Turbine Blades
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
.
18.
Kutz
,
K. J.
, and
Speer
,
T. M.
,
1992
, “
Simulation of the Secondary Air System of Aero Engines
,”
ASME. J. Turbomach.
,
116
(
2
), pp.
306
315
.
19.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transf.
,
7
, pp.
321
379
.
20.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Ejection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
21.
Holgate
,
N. E.
,
Cresci
,
I.
,
Ireland
,
P. T.
, and
Rawlinson
,
A.
,
2017
, “
Prediction and Augmentation of Nozzle Guide Vane Film Cooling Hole Pressure Margin
,”
12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Stockholm, Sweden
,
Apr. 3–7
.
22.
Ambrok
,
G. S.
,
1957
, “
Approximate Solution of Equations for the Thermal Boundary Layer With Variations in Boundary Layer Structure
,”
Sov. Phys. Tech. Phys.
,
2
(
9
), pp.
1979
1986
.
23.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1980
,
Convective Heat and Mass Transfer
, Vol.
4
,
McGraw-Hill
,
New York
.
24.
van de Noort
,
M.
, and
Ireland
,
P. T.
,
2022
, “
A Low Order Flow Network Model for Double-Wall Effusion Cooling Systems
,”
Int. J. Turbomach. Propuls. Power
,
7
(
1
).
25.
Harrison
,
G. F.
,
1993
,
European Propulsion Forum
,
Royal Aeronautical Society
,
London
.
26.
MathWorks
,
2023
, “How the Genetic Algorithm Works.” https://uk.mathworks.com/help/gads/how-the-genetic-algorithm-works.html, Accessed April 7, 2022.
27.
Skamniotis
,
C.
,
Courtis
,
M.
, and
Cocks
,
A. C. F.
,
2021
, “
Multiscale Analysis of Thermomechanical Stresses in Double Wall Transpiration Cooling Systems for Gas Turbine Blades
,”
Int. J. Mech. Sci.
,
207
, p.
106657
.
You do not currently have access to this content.