Abstract

Non-axisymmetric endwall profiling offers features to simultaneously mitigate aerodynamic losses and hot gas ingestion in axial turbines. This paper presents an optimization methodology to generate a contoured surface integrated with real geometrical effects such as blade fillets and a rim seal channel with the aim of achieving higher efficiencies while reducing hot gas ingestion. The contoured rotor platform is constructed using a B-spline surface clamped in the axial direction. In the azimuthal direction, the surface is unclamped to allow geometrical continuity across the periodic boundaries. The endwall parameterization is used to optimize a rotor hub platform of a high-pressure turbine stage. A differential evolution optimizer is used to rank individuals in terms of efficiency. The single-objective optimization is set to maximize the aerodynamic efficiency and it is defined such that it accounts for the flow non-uniformity through a mixed-out averaging procedure. Engine representative conditions typical of a two-stage high-pressure turbine are used as boundary conditions. Geometrical and aerodynamic constraints are set to guarantee a fair comparison among individuals and to meet engine requirements. Two surface parameterizations, which use a different number of design variables but share the same construction strategy, are presented to show the trade-off between the number of degrees-of-freedom and the aerodynamic improvement. Different purge flow conditions are considered to assess the robustness of the optimization results at off-design conditions for relevant geometries. The aim of this paper is to show the advanced shape flexibility of the implemented parameterization for contoured platforms featuring technological effects such as blade fillet and rim seal channel. The work provides design guidelines to setup engine-realistic constraints for endwall contour optimization of turbine stages.

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls: Part I–Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
.
3.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2010
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.
4.
Shahpar
,
S.
,
Caloni
,
S.
, and
de Prieëlle
,
L.
,
2017
, “
Automatic Design Optimization of Profiled Endwalls Including Real Geometrical Effects to Minimize Turbine Secondary Flows
,”
ASME J. Turbomach.
,
139
(
7
), p.
071002
.
5.
Wood
,
L.
,
Jones
,
R.
,
Pountney
,
O. J.
,
Scobie
,
J.
,
Rees
,
D. A. S.
, and
Sangan
,
C.
,
2020
, “
A Geometry Generation Framework for Contoured Endwalls
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011003
.
6.
Rose
,
M.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGV’s of an Axial Flow Gas Turbine
,” ASME Paper No. 94-GT-249.
7.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I – Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
8.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2013
, “
Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
9.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2003
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Nonaxisymmetric End Walls–Part I: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.
10.
Milli
,
A.
, and
Shahpar
,
S.
,
2008
, “
Full-Parametric Design System to Improve the Stage Efficiency of a High-Fidelity HP Turbine Configuration
,” ASME Paper No. GT2008-51348.
11.
Lott
,
P. T.
,
Hills
,
N. J.
,
Chew
,
J. W.
,
Scanlon
,
T.
, and
Shahpar
,
S.
,
2009
, “
High Pressure Turbine Stage Endwall Profile Optimisation for Performance and Rim Seal Effectiveness
,” ASME Paper No. GT2009-59923.
12.
Regina
,
K.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Lohaus
,
A.
, and
Voelker
,
S.
,
2014
, “
Aerodynamic Robustness of End Wall Contouring Against Rim Seal Purge Flow
,”ASME Paper No. GT2014-26007.
13.
Turgut
,
O. H.
, and
Camcı
,
C.
,
2011
, “
A Nonaxisymmetric Endwall Design Methodology for Turbine Nozzle Guide Vanes and Its Computational Fluid Dynamics Evaluation
,” ASME Paper No. IMECE2011-64362.
14.
Miyoshi
,
I.
,
Higuchi
,
S.
, and
Kishibe
,
T.
,
2013
, “
Improving the Performance of a High Pressure Gas Turbine Stage Using a Profiled Endwall
,” ASME Paper No. GT2013-95148.
15.
Luo
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2015
, “
Turbine Blade Row Optimization Through Endwall Contouring by an Adjoint Method
,”
J. Propul. Power
,
31
(
2
), pp.
505
518
.
16.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade–Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
.
17.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.
18.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
19.
Shene
,
C.
,
2011
, “
Cs3621: Introduction to Computing With Geometry Notes
”.
20.
Moler
,
C.
,
2018
, “
Explore Runge’s Polynomial Interpolation Phenomenon
,”
MathWorks
.
21.
Hänni
,
D. D.
,
Schädler
,
R.
,
Abhari
,
R. S.
,
Kalfas
,
A. I.
,
Schmid
,
G.
,
Lutum
,
E.
, and
Lecoq
,
N.
,
2019
, “
Purge Flow Effects on Rotor Hub Endwall Heat Transfer With Extended Endwall Contouring Into the Disk Cavity
,”
J. Glob. Power Propuls. Soc.
,
3
(
3
), pp.
555
568
.
22.
Kadhim
,
Hakim
, T
, and
Rona
,
Aldo
,
2018
, “
Design Optimization Workflow and Performance Analysis for Contoured Endwalls of Axial Turbines
,”
Energy
,
149
(
C
), pp.
875
889
.
23.
Numeca User Guide - Hexpress® 8.1.
24.
Cernat
,
B.
,
Pátý
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes: Part I – Turbine Rainbow Rotor Testing and CFD Methods
,”
ASME J. Turbomach.
,
141
(
11
), p.
011006
.
25.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,” Paper No. AIAA-81-1259.
26.
Pátý
,
M.
, and
Lavagnoli
,
S.
,
2018
, “
Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
,” Paper No. AIAA 2018-4435.
27.
Wyss
,
M.
,
Chima
,
R.
, and
Tweedt
,
D.
,
1994
, “
Averaging Techniques for Steady and Unsteady Calculations of a Transonic Fan Stage
,” Paper No. AIAA-93-3065.
28.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution–A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), p.
341
.
You do not currently have access to this content.