Abstract

In this paper, the predictions of an analytical model for seal flutter have been compared with the experimental data of a rotating multi-cavity labyrinth seal test rig. The experiments were conducted to assess the flutter inception in a large set of operating conditions by varying the rotational speed and the total pressure ratio across the seal. The analytical model derived by Corral et al. (2022, “Effective Clearance and Differential Gapping Impact on Seal Flutter Modelling and Validation,” ASME J. Turbomach., 144 (7), p. 071010) has been previously validated by using a frequency domain linearized Navier–Stokes solver retaining the effect of the effective gaps and the kinetic energy carried over to the downstream fin. A set of 3D steady RANS simulations has been carried out to reduce the uncertainty in the steady characteristics of the seal that are used to inform the flutter model. The simulations consider the static deformation due to the pressure and the centrifugal force through a set of numerical models with geometrical gap differences. The stability has been investigated in a large range of operating conditions. It is concluded that the analytical model can be used to quickly predict the modes susceptible to flutter, provided that the steady flow field and the effective running clearances of the seal are well predicted.

References

1.
Alford
,
J.
,
1964
, “
Protection of Labyrinth Seals From Flexural Vibration
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
141
147
.
2.
Alford
,
J.
,
1967
, “
Protecting Turbomachinery From Unstable and Oscillatory Flows
,”
ASME J. Eng. Gas Turbines Power
,
89
(
4
), pp.
513
528
.
3.
Lewis
,
D.
,
Platt
,
C.
, and
Smith
,
E.
,
1979
, “
Aeroelastic Instability in F100 Labyrinth Air Seals
,”
AIAA J. Aircraft
,
16
(
7
), pp.
484
490
.
4.
Miura
,
T.
, and
Sakai
,
N.
,
2019
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
.
5.
Hualca
,
F.
,
Schwingshackl
,
C.
,
Setchfield
,
R.
,
Gallego
,
J.
,
Korte
,
D.
,
Corral
,
R.
,
Greco
,
M.
, and
Bermejo
,
O.
,
2022
, “
Development of a Novel Static Seal Flutter Rig
,”
ISUAAAT16-51, Proceedings of the 16th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
,
Toledo, Spain
,
Sept. 19–23
.
6.
Alford
,
J. S.
,
1971
, “
Labyrinth Seal Designs Have Benefitted From Development and Service Experience
,” SAE Technical Paper,
SAE International
.
7.
Ehrich
,
F.
,
1968
, “
Aeroelastic Instability in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
90
(
4
), pp.
369
374
.
8.
Abbot
,
D. R.
,
1981
, “
Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
308
312
.
9.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background
,”
ASME J. Turbomach.
,
140
(
10
), p.
121006
.
10.
Corral
,
R.
,
Vega
,
A.
, and
Greco
,
M.
,
2020
, “
Conceptual Flutter Analysis of Stepped Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
071001
.
11.
Corral
,
R.
,
Greco
,
M.
, and
Vega
,
A.
,
2021
, “
Higher-Order Conceptual Model for Seal Flutter
,”
ASME J. Turbomach.
,
143
(
7
), p.
071006
.
12.
Corral
,
R.
,
Greco
,
M.
, and
Vega
,
A.
,
2022
, “
Effective Clearance and Differential Gapping Impact on Seal Flutter Modelling and Validation
,”
ASME J. Turbomach.
,
144
(
7
), p.
071010
.
13.
Greco
,
M.
, and
Corral
,
R.
,
2021
, “
Numerical Validation of an Analytical Seal Flutter Model
,”
J. Glob. Power Propul. Soc.
,
5
(
1
), pp.
191
201
.
14.
Corral
,
R.
,
Greco
,
M.
, and
Matabuena
,
L.
,
2023
, “
Nonlinear Flutter Analysis of Labyrinth Seals
,”
ASME J. Turbomach.
,
145
(
7
), p.
071007
.
15.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery-Part II: Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
820
826
.
16.
Zhuang
,
Q.
,
Bladh
,
R.
,
Munktell
,
E.
, and
Lee
,
Y.
,
2019
, “
Parametric Study on the Aeroelastic Stability of Rotor Seals
,”
J. Global Power Propul. Soc.
,
3
(
1
), pp.
569
579
.
17.
Phibel
,
R.
,
Mare
,
L. D.
, and
Imregun
,
J. G. M.
,
2009
, “
Labyrinth Seal Aeroelastic Stability, A Numerical Investigation
,”
I12-S2-3, Proceedings of the 12th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
,
London, UK
,
Sept. 1
.
18.
Mare
,
L. D.
,
Imregun
,
M.
,
Green
,
J.
, and
Sayma
,
A. I.
,
2010
, “
A Numerical Study on Labyrinth Seal Flutter
,”
ASME J. Tribol.
,
132
(
2
), p.
022201
.
19.
Vega
,
A.
, and
Corral
,
R.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part II: Physical Interpretation
,”
ASME J. Turbomach.
,
140
(
10
), p.
121007
.
20.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier-Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
AIAA Paper 2003-3326, 9th AIAA/CEAS Aeroacoustics Conference
,
Hilton Head, SC
,
May 12–14
.
21.
Burgos
,
M.
,
Corral
,
R.
, and
Contreras
,
J.
,
2011
, “
Efficient Edge Based Rotor/Stator Interaction Method
,”
AIAA J.
,
41
(
1
), pp.
19
31
.
22.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Efficient Execution of a Parallel Edged-Based Navier-Stokes Solver on Graphics Processing Units
,”
Int. J. Comp. Fluid Dyn.
,
31
(
2
), pp.
1
16
.
You do not currently have access to this content.