Abstract

The first-stage gas turbine vane surfaces and endwalls require aggressive cooling. This two-part paper introduces a modified design of the combustor–turbine (C–T) interface, the “close-coupled interface,” that is expected to increase cooling performance of vane passage surfaces. While Part I of the paper describes secondary flows and coolant transport in the passage, this part discusses the effects of the new C–T interface geometry on adiabatic cooling effectiveness of the endwall and vane surfaces. Compared to the traditional C–T interface, the coolant requirement is reduced for the same level of cooling effectiveness on all three surfaces for the new C–T interface design, confirming that it is an improvement over the previous design. The endwall crossflow is reduced by combustor coolant injection with the new interface leading to more pitchwise-uniform cooling of the endwall. For the pressure surface, increasing combustor coolant flowrate directly increases phantom cooling effectiveness and spreading of coolant away from the endwall. With the traditional passage vortex seen in the literature replaced by the impingement vortex of the present design, the suction surface receives less phantom cooling than does the pressure surface. However, cooling performance is still improved over that of the previous C–T interface design.

References

1.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
2.
Ewen
,
J. S.
,
Huber
,
F. W.
, and
Mitchell
,
J. P.
,
1973
, “
Investigation of the Aerodynamic Performance of Small Axial Turbines
,”
J. Eng. Power
,
95
(
4
), pp.
326
332
.
3.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,”
ASME Winter Annual Meeting
,
Houston, TX
,
Nov. 30–Dec. 5
.
4.
Kopper
,
F. C.
,
Milanot
,
R.
, and
Vancot
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
.
5.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
666
.
6.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Mass Trans.
,
96
(
4
), pp.
524
529
.
7.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.
8.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
(
2
), pp.
278
284
.
9.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.
10.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
.
11.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High Pressure NGV Endwall Cooling Systems
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer
,
Charlotte, NC
,
June 26–30
, p.
121002
.
12.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
.
13.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
.
14.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwall—Part 1: Aero-Dynamics
,”
ASME J. Turbomach.
,
143
(
12
), p.
121009
.
15.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls- Part 2: Thermal Measurements
,”
ASME J. Turbomach.
,
143
(
12
), p.
121010
.
16.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane
,”
ASME J. Turbomach.
,
143
(
3
), p.
031003
.
17.
Zhang
,
L.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H.-K.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Volume 5B: Heat Transfer
,
Montreal, Quebec, Canada
,
June 15–19
, p.
42541
.
18.
Li
,
S.-J.
,
Yang
,
S.-F.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2016
, “
Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing-Edge Ejection
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
770
781
.
19.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of the Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
Appl. Therm. Eng.
,
121
, pp.
688
700
.
20.
Du
,
K.
,
Song
,
L.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Effects of the Mainstream Turbulence Intensity and Slot Injection Angle on the Endwall Cooling and Phantom Cooling of the Vane Suction Side Surface
,”
Int. J. Heat Mass Transfer
,
112
, pp.
427
440
.
21.
Nawathe
,
K. P.
,
Zhu
,
R.
,
Lin
,
E.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Nozzle Passage Endwall Effectiveness Values With Various Combustor Coolant Flowrates—Part 1: Flowfield Velocity and Coolant Concentration Measurements
,”
ASME J. Turbomach.
,
143
(
4
), p.
041009
.
22.
Nawathe
,
K. P.
,
Zhu
,
R.
,
Lin
,
E.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Nozzle Passage Endwall Effectiveness Values With Various Combustor Coolant Flowrates—Part 2: Endwall and Vicinity Surface Effectiveness Measurements
,”
ASME J. Turbomach.
,
143
(
4
), p.
041010
.
23.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
You do not currently have access to this content.