Abstract

The flows close to a high-pressure turbine endwall are highly three-dimensional and unsteady. These flows increase the aerodynamic loss and augment the heat transfer. In this paper, the unsteady flows and film cooling characteristics of an endwall were studied by using the Detached eddy simulation (DES). First, the unsteady flows and film cooling characteristics of a slot on a flat plate were studied at three different coolant mass flow ratios. A comparison of the experimental and numerical results showed that the DES offered an improved ability to capture the distribution of film cooling effectiveness. The aerothermal characteristics of the interrupted slot on a vane endwall were then studied. By analyzing the unsteady flow as well as the mixing process, it was found that the shedding vortices produced by the step lip played a dominant role in the film cooling distribution and the formation of the horseshoe vortex. The coupling of the shedding vortices with the horseshoe vortex had an important influence on the film effectiveness on the endwall. Finally, the effect of the axial distance between the interrupted slot and the vane leading edge on the formation of the horseshoe vortex was further studied. The instantaneous vorticity contours showed that varying the axial position of the interrupted slot affected the development of the horseshoe vortex. As the axial distance increased, the horseshoe vortex disappeared periodically and then reappeared. As the axial distance decreased, the horseshoe vortex retained a steady pattern upstream of the vane leading edge.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
New York
, p.
869
.
2.
Liu
,
S.
, and
Tao
,
Z.
,
2018
,
Heat Transfer and Secondary air System of Gas Turbine Engine
,
Shanghai Jiaotong University Press
,
Shanghai
.
3.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
4.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
5.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
4a
), pp.
862
869
.
6.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer-Trans. ASME
,
96
(
4
), pp.
524
529
.
7.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection over A Contoured End Wall on Nozzle Guide Vane Cooling Performance: Part II- Thermal Measurements
,” ASME Paper No. 2000-GT-200.
8.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film-Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
9.
Cardwell
,
N. D.
,
Sundaram
,
N. K.
, and
Thole
,
K. A.
,
2006
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
91
102
.
10.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.
11.
Salinas
,
D. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2021
, “
Upstream Film Cooling on the Contoured Endwall of a Transonic Turbine Vane in an Annular Cascade
,”
ASME J. Turbomach.
,
143
(
6
), p.
061012
.
12.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane
,” ASME Paper No. GT2020-15746.
13.
Thrift
,
A. A.
, and
Thole
,
K. A.
,
2012
, “
Influence of Flow Injection Angle on a Leading-Edge Horseshoe Vortex
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4651
4664
.
14.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2005
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part I: Temporal Behavior
,”
ASME J. Turbomach.
,
128
(
4
), pp.
747
754
.
15.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part II: Time-Mean Results
,”
ASME J. Turbomach.
,
128
(
4
), pp.
755
762
.
16.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2003
, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT2003-38252.
17.
Du
,
K.
, and
Li
,
J.
,
2016
, “
Numerical Study on the Effects of Slot Injection Configuration and Endwall Alignment Mode on the Film Cooling Performance of Vane Endwall
,”
Int. J. Heat Mass Transfer
,
98
, pp.
768
777
.
18.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,” ASME Paper No. GT2003-38319.
19.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Proceedings of the First AFOSR International Conference on DND/LES
,
Ruston, LA
,
Aug. 4–8
, pp.
134
148
.
20.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the 4th International Symposium on Turbulence Heat and Mass Transfer
,
West Redding, CT
, pp.
625
632
21.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2005
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
22.
Ivanova
,
E.
, and
Laskowski
,
G. M.
,
2014
, “
LES and Hybrid RANS/LES of a Fundamental Trailing Edge Slot
,” ASME Paper No. GT2014-25906.
23.
Xu
,
Q.
,
Du
,
Q.
,
Wang
,
P.
,
Liu
,
J.
, and
Liu
,
G.
,
2018
, “
Computational Investigation of Film Cooling and Secondary Flow on Turbine Endwall With Coolant Injection From Upstream Interrupted Slot
,”
Int. J. Heat Mass Transfer
,
123
, pp.
285
296
.
24.
Xu
,
Q.
,
Du
,
Q.
,
Wang
,
P.
, and
Zhu
,
J.
,
2019
, “
Computational Study of Film Cooling and Flowfields on a Stepped Vane Endwall With a Row of Cylindrical Hole and Interrupted Slot Injections
,”
Int. J. Heat Mass Transfer
,
134
, pp.
796
780
.
25.
Xiao
,
X.
,
Wang
,
P.
,
Du
,
Q.
,
Xu
,
Q.
,
Liu
,
J.
, and
Zhu
,
J.
,
2021
, “
Numerical Investigations of Film Cooling Characteristics of Interrupted Slot and Trench Holes on a Vane Endwall
,”
J. Therm. Sci.
,
30
(
3
), pp.
1010
1024
.
26.
Sieverding
,
C. H.
, and
Heinemann
,
H.
,
1990
, “
The Influence of Boundary Layer State on Vortex Shedding From Flat Plates and Turbine Cascades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
181
187
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, p.
3
.
You do not currently have access to this content.