Abstract

There can be significant variation and uncertainty in the flow conditions entering a blade row. This article explores how this variability can affect endwall loss in axial turbines. A computational study of three cascades with collinear inlet boundary layers is conducted. Endwall loss varies by more than a factor of 3 depending on the inlet conditions. This variation is caused by dissipation of secondary kinetic energy (SKE). The results can be understood by observing that the inlet conditions predominantly control how secondary vorticity is distributed within the blade passage. Modestly thick inlet boundary layers with high shape factor tend to displace vorticity toward the center of the passage. This displacement reduces vorticity cancellation, increasing secondary velocities, and SKE. A general method is formulated to estimate SKE in preliminary design. Optimum aspect ratio is shown to depend on the inlet boundary condition. Strategies to reduce endwall loss and minimize sensitivity to inlet conditions are then highlighted.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms In Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Coull
,
J. D.
,
2017
, “
Endwall Loss In Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.
3.
Sieverding
,
C. H.
,
1985
, “
Recent Progress In The Understanding Of Basic Aspects Of Secondary Flows In Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
4.
Langston
,
L. S.
,
2001
, “
Secondary Flows In Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
5.
Walsh
,
J.
, and
Gregory-Smith
,
D. G.
,
1990
, “
Inlet Skew and the Growth of Secondary Losses and Vorticity in a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
633
642
.
6.
Dunham
,
J.
,
1970
, “
A Review of Cascade Data on Secondary Losses in Turbines
,”
J. Mech. Eng. Sci.
,
12
(
1
), pp.
48
59
.
7.
de la Rosa Blanco
,
E. R.
,
Hodson
,
H. P.
,
Vazquez
,
R.
, and
Torre
,
D.
,
2003
, “
Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between Pressure Surface Separation and Endwall Flows
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
433
441
.
8.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources Of Endwall Loss in Axial Flow Turbines
,”
Turbo Expo: Power for Land, Sea, and Air
, pp.
1417
1430
, ASME Paper No. GT2012-69173.
9.
Coull
,
J. D.
,
Clark
,
C. J.
, and
Vazquez
,
R.
,
2019
, “
The Sensitivity of Turbine Cascade Endwall Loss to Inlet Boundary Layer Thickness
,”
J. Glob. Power Propuls. Soc.
,
3
, pp.
340
354
.
10.
Squire
,
H. B.
, and
Winter
,
K. G.
,
1951
, “
The Secondary Flow in a Cascade of Airfoils in a Nonuniform Stream
,”
J. Aeronaut. Sci.
,
18
(
4
), pp.
271
277
.
11.
Hawthorne
,
W. R.
,
1955
, “
Rotational Flow Through Cascades: Part 1: The Components of Vorticity
,”
Q. J. Mech. Appl. Math.
,
8
(
3
), pp.
266
279
.
12.
Marsh
,
H.
,
1976
, “
Secondary Flow in Cascades—The Effect of Compressibility
,” Aeronautical Research Council R&M No. 3778.
13.
Okan
,
B. M.
, and
Gregory-Smith
,
D. G.
,
1995
, “
The Estimation of Secondary Flows and Losses in Turbines
,”
VDI Berichte
,
1185
, pp.
127
127
.
14.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME Turbo Expo: Power for Land, Sea, and Air
, pp.
579
590
, Paper No. GT2003-38698.
15.
Moinier
,
P.
, and
Giles
,
M. B.
,
1998
, “
Preconditioned Euler and Navier-Stokes Calculations on Unstructured Grids
,”
6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
Oxford, UK
,
March–April
.
16.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
17.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2019
, “
Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure-Turbine Cascade—Part II: Loss Generation
,”
ASME J. Turbomach.
,
141
(
5
), p.
051004
.
18.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth Of Secondary Losses And Vorticity In An Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
19.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
201
209
.
20.
Halstead
,
D. E.
,
1996
, “
Boundary Layer Development in Multi-Stage Low Pressure Turbines
,” Ph.D. thesis,
Iowa State University
,
IA
.
21.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1971
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng., Part E
,
185
(
32/71
), pp.
1970
1971
.
22.
Hawthorne
,
W. R.
,
1955
, “
Some Formulae for the Calculation of Secondary Flow in Cascades
,”
Aeronautical Research Council
, Report No. 17,519.
You do not currently have access to this content.