Abstract

This paper describes the stall mechanism in an ultrahigh-pressure-ratio centrifugal compressor, composed of a double-splitter impeller, radial diffuser, and axial diffuser. A model comprising all impeller and diffuser blade passages is used to conduct unsteady simulations that trace the onset of instability in the compressor. Backward-traveling rotating stall waves appear at the inlet of the radial diffuser when the compressor is throttled. Six stall cells propagate circumferentially at approximately 0.7% of the impeller rotation speed. The detached shock of the radial diffuser leading edge and the number of stall cells determine the direction of stall propagation, which is opposite to the impeller rotation direction. Dynamic mode decomposition is applied to instantaneous flow fields to extract the flow structure related to the stall mode. This shows that intensive pressure fluctuations concentrate in the diffuser throat as a result of changes in the detached shock intensity. The diffuser passage stall and stall recovery are accompanied by changes in incidence angle and shock wave intensity. When the diffuser passage stalls, the shock-induced boundary–layer separation region near the diffuser vane suction surface gradually expands, increasing the incidence angle and decreasing the shock intensity. The shock is pushed from the diffuser's throat toward the diffuser leading edge. When the diffuser passage recovers from the stall, the shock wave gradually returns to the diffuser throat, with the incidence angle decreasing and the shock intensity increasing. Once the shock intensity reaches its maximum, the diffuser passage suffers severe shock-induced boundary–layer separation and stalls again.

References

1.
Moore
,
F.
, and
Greitzer
,
E.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.
2.
Greitzer
,
E.
, and
Moore
,
F.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part II—Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.
3.
McDougall
,
N.
,
Cumpsty
,
N.
, and
Hynes
,
T.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
4.
Day
,
I.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
5.
Camp
,
T.
, and
Day
,
I.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
6.
Vo
,
H.
,
Tan
,
C.
, and
Greitzer
,
E.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
7.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
8.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Flow Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
9.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
10.
Everitt
,
J. N.
, and
Spakovsky
,
Z. S.
,
2013
, “
An Investigation of Stall Inception in Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.
11.
Fujisawa
,
N.
,
Inui
,
T.
, and
Ohta
,
Y.
,
2019
, “
Evolution Process of Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
141
(
4
), p.
041009
.
12.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Roumeas
,
M.
, and
Trebinjac
,
I.
,
2016
, “
Numerical Simulation of Stall Inception Mechanisms in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
138
(
12
), p.
121005
.
13.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,” ASME Paper No. 53-A-65.
14.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME. J. Turbomach.
,
138
(
1
), p.
011001
.
15.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.
16.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
31
(
3
), p.
031012
.
17.
Brandvik
,
T.
, and
Pullan
,
G.
,
2010
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
18.
Gourdain
,
N.
, and
Leboeuf
,
F.
,
2009
, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments
,”
ASME J. Turbomach.
,
131
(
2
), p.
021013
.
19.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2004
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
20.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “Axial Flow Compressor Noise Studies,” SAE Technical Paper No. 620532.
21.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Computational Dynamics
,
1
(
2
), pp.
391
421
.
22.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
You do not currently have access to this content.