Abstract

This work deals with the application of the open-source computational fluid dynamics (CFD) code MULTALL to the analysis of tube-axial fans. The code has been widely validated in the literature for high-speed turbomachine flows but not applied yet to low-speed tutbomachines. The aim of this work is to assess the degree of reliability of MULTALL as a tool for simulating the internal flow in industrial axial-flow fan rotors. To this end, the predictions of the steady-state air-flow field in the annular sector of a 315 mm tube-axial fan obtained by MULTALL 18.3 are compared with those obtained by two state-of-the-art CFD codes and experimental data of the global aerodynamic performance of the fan and the pitch-wise averaged velocity distribution downstream of the rotor. All the steady-state Reynolds-averaged Navier–Stokes (RANS) calculations were performed on either fully structured hexahedron or hexa-dominant grids using classical formulations of algebraic turbulence models. The pressure curve and the trend of the aeraulic efficiency in the stable operation range of the fan predicted by MULTALL show very good agreement with both the experimental data and the other CFD results. Although the estimation of the fan efficiency predicted by MULTALL can be noticeably improved by the more sophisticated state-of-the-art CFD codes, the analysis of the velocity distribution at the rotor exit supports the use of MULTALL as a reliable CFD analysis tool for designers of low-speed axial fans.

References

1.
Bamberger
,
K.
, and
Carolus
,
T.
,
2015
, “
Design Guidelines for Low Pressure Axial Fans Based on CFD-Trained Meta-Models
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
,
Paper No. ETC2015-175
.
2.
Hirsch
,
C.
,
1990
,
Numerical Computation of Internal and External Flows, Vol. II: Computational Methods for Inviscid and Viscous Flows
,
Wiley
,
New York
.
3.
Denton
,
J. D.
,
1978
, “
Throughflow Calculations for Transonic Axial Flow Turbines
,”
J. Eng. Power
,
100
(
2
), pp.
212
218
. 10.1115/1.3446336
4.
Denton
,
J. D.
,
1983
, “
An Improved Time-Marching Method for Turbomachinery Flow Calculation
,”
ASME J. Eng. Gas Turbines Power
,
105
(
3
), pp.
514
521
. 10.1115/1.3227444
5.
He
,
L.
, and
Denton
,
J. D.
,
1994
, “
Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades
,”
ASME J. Turbomach.
,
116
(
3
), pp.
469
476
. 10.1115/1.2929436
6.
Denton
,
J. D.
, and
Xu
,
L.
,
1999
, “
The Exploitation of Three-Dimensional Flow in Turbomachinery Design
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
125
137
. 10.1243/0954406991522220
7.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
. 10.1115/1.2927983
8.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1999
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
. 10.1243/0954406991522211
9.
Pullan
,
G.
,
Denton
,
J. D.
, and
Dunkley
,
N.
,
2003
, “
An Experimental and Computational Study of the Formation of a Streamwise Shed Vortex in a Turbine Stage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
291
297
. 10.1115/1.1545766
10.
Rosic
,
B.
,
Denton
,
J. D.
, and
Pullan
,
G.
,
2006
, “
The Importance of Shroud Leakage Modeling in Multistage Turbine Flow Calculations
,”
ASME J. Turbomach.
,
128
(
4
), pp.
699
707
. 10.1115/1.2181999
11.
Kaschel
,
C. E.
, and
Denton
,
J. D.
,
2006
, “
Experimental and Numerical Investigation of the Unsteady Surface Pressure in a Three-Stage Model of an Axial High Pressure Turbine
,”
ASME J. Turbomach.
,
128
(
2
), pp.
261
272
. 10.1115/1.1860378
12.
Crichton
,
D.
,
2007
, “
Fan Design and Operation for Ultra Low Noise
,”
Ph.D. dissertation
,
University of Cambridge, Engineering Department
.
13.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
Proceedings of the ASME Turbo Expo, Volume 7, Issue Parts A, B, and C
,
Glasgow, UK
,
June 14–18
.
14.
Persson
,
M.
,
2015
, “
Highly Loaded HPT Blading in KTH Test Turbine
,”
M.Sc. thesis
,
Division of Thermal Power Engineering Department of Energy Sciences Lund University
,
Sweden
.
15.
Denton
,
J. D.
,
2017
, “
Multall—An Open Source, Computational Fluid Dynamics Based, Turbomachinery Design System
,”
ASME J. Turbomach.
,
139
(
12
), p.
121001
. 10.1115/1.4037819
16.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
, pp.
1
32
. 10.1016/j.paerosci.2013.06.001
17.
Cardillo
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2014
, “
A Numerical Investigation Into the Aerodynamic Effect of Pressure Pulses on a Tunnel Ventilation Fan
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
228
(
3
), pp.
285
299
. 10.1177/0957650913517881
18.
Angelini
,
G.
,
Bonanni
,
T.
,
Corsini
,
A.
,
Delibra
,
G.
,
Tieghi
,
L.
, and
Volponi
,
D.
,
2017
, “
Optimization of an Axial Fan for Air Cooled Condensers
,”
Energy Procedia
,
126
, pp.
754
761
. 10.1016/j.egypro.2017.08.236
19.
ISO—International Organization for Standard—Technical Committee ISO/TC 117, Fans
,
2007
, “
Industrial Fans—Performance Testing Using Standardized Airways
,”
ISO 5801:2007, CP 401—1214 Vernier
,
Geneva
,
Switzerland
.
20.
Masi
,
M.
, and
Lazzaretto
,
A.
,
2019
, “
A New Practical Approach to the Design of Industrial Axial Fans: Tube-Axial Fans With Very Low Hub-to-Tip Ratio
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101003
. 10.1115/1.4044206
21.
Wallis
,
R. A.
,
1977
, “
The F-Series Airfoils for Fan Blade Sections
,”
Mech. Eng. Trans. I. E. Aust., ME2
,
1
, pp.
12
20
.
22.
Castegnaro
,
S.
,
Masi
,
M.
, and
Lazzaretto
,
A.
,
2018
, “
Design and Testing of an ISO 5801 Inlet Chamber Test Rig and Related Issues With the Standard
,”
Proceedings of FAN 2018 Conference
,
Darmstadt, Germany
,
Apr. 18–20
,
Paper No. FAN2018-016
.
23.
Masi
,
M.
, and
Lazzaretto
,
A.
,
2012
, “
CFD Models for the Analysis of Rotor-Only Industrial Axial-Flow Fans
,”
Proceedings of FAN 2012 Conference
,
Senlis, France
,
Apr. 18–20
,
Paper No. FAN2012-076
.
24.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
. 10.1016/0045-7825(74)90029-2
25.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
,
NASA TM-106721, ICOMP-94-21; CMOT-94-6
.
26.
Lien
,
F. S.
,
Chen
,
W. L.
, and
Leschziner
,
M. A.
,
1996
, “Low-Reynolds Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations,”
Engineering Turbulence Modelling and Experiments
, Vol.
3
,
W.
Rodi
, and
G.
Bergeles
, eds.,
Elsevier B.V.
,
Amsterdam
, pp.
91
100
.
27.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
, pp.
301
318
. 10.1016/0017-9310(69)90012-x
28.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Limited
,
Harlow, UK
.
29.
Prandtl
,
L.
,
1925
, “
Bericht über Untersuchungen zur ausgebildeten Turbulenz
,”
ZAMM
,
5
(
2
), pp.
136
139
. 10.1002/zamm.19250050212
30.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
, Paper 92-0439.
31.
Havakechian
,
S.
, and
Denton
,
J. D.
,
2015
, “
3D Blade Stacking Strategies and Understanding of Flow Physics in Low Pressure Steam Turbines. Part I—3D Stacking Mechanisms
,”
Proceeding of the ASME Turbo Expo 2015
,
Montréal, Canada
,
June 15–19
,
Paper No. GT2015-42591
. 10.1115/gt2015-42591
32.
Tieghi
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Angelini
,
G.
,
2019
, “
Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge
,”
Proceeding of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
,
Paper No. GT2019-91238
. 10.1115/gt2019-91238
You do not currently have access to this content.